

DESIGN ISSUES OF A NEW WIND TUNNEL LABORATORY FOR ENVIRONMENTAL AND VEHICLE AERODYNAMICS

Márton BALCZÓ PhD, assistant professor

BME Department of Fluid Mechanics

- 1. Environmental and building aerodynamics at the DFM
- 2. Boundary-layer wind tunnels (BLWTs)
- 3. The existing BLWT
- 4. Requirements of a new laboratory
- 5. BLWT application matrix
- 6. Space and design constraints
- 7. Design variants
- 8. Summary

ENVIRONMENTAL AND BUILDING AERODYNAMICS AT THE THEODORE VON KÁRMÁN WT LAB

- 1. Large Göttingen-type wind tunnel
- 2. Boundary layer modelling using spikes, rods and roughness elements
- 3. Modell scale environmental : 1:350 -1000
- 4. Modell scale building aerodynamics: 1:100 –
 1:200 (turbulent length scale does not fit)

- WT of Building Research Institute (ÉTI), rebuilt 1984
- decommisioned and bought by our laboratory 2003

0.2

0

0.6

0.4

I_v [-]

THE EXISTING BOUNDARY-LAYER TUNNEL

test section type	closed
preparation section length [m]	5.5
Test section [m]	2.2 x 1.4
max. wind speed [m/s]	19

THE EXISTING BOUNDARY-LAYER TUNNEL

test section type	closed
preparation section length [m]	5.5
Test section [m]	2.2 x 1.4
max. wind speed [m/s]	19

Problems

- 1. exposure to weather
- 2. dust generation during operation
- 3. no security of valuable instrumentation
- 4. extreme heat under the pentice during summer.
- 5. lack of curtains or disillumination for flow visualisation.
- 6. no laser protection of trespassers.
- 7. use of external air causes unsteady flow.

- 1. Long boundary layer generation section ⇒ equilibrium boundary layer (BL)
 - ⇒ larger BL thickness
 - ⇒ larger model scale
- 2. (at least partial) weather protection ⇒ closed laboratory space

QUESTIONS

- 1. Refurbish the existing BLWT / extend the existing BLWT / fully new BLWT ?
- 2. use of external air (as today) / circulation of internal air / recirculating tunnel ?
- 3. How to fit the wind tunnel into the available space ?

Wind tunnel		Test section		power	Тор	Comment / Specialities	Cost		
Owner	Built	Layout	Size	Туре	W		speed		
			[m²]		[m]	[kW]	[m/s]		[€]
University of Adelaide	2011	closed circuit	31 × 19	closed/ open	3	6 × 135	33	$2.75 \times 2m$ high speed test section for aeronautical testing up to 50 m/s is located in the other leg.	3.65M
ETH Zürich / EMPA	2011	closed circuit	25 × 6.5	closed	1.9	110	28	Use of external air possible instead of recirculation. Test section blocks easily removable.	
Leibniz Institute for Agr. Eng. Potsdam	2012	open return	29 × 6.5	closed	3		20	Mainly used in agricultural research, odour dispersion	1.18M
TU Eindhoven	**	closed circuit	42 × 12**	closed	n/a	n/a	n/a	Facilitating building will be approx. 850 m ²	1.4M **

* flow preparation section + test section length added

** in design phase, estimated values based on [7]

Conclusion: closed circuit is the preferred type

Wind tunnel (WT)		Built Total		Test section		Тор	Application area	Comment / Specialties
Owner	Туре	[vear]	lengt h [m]	Туре	Width [m]	speed [m/s]		
Budapest Jniversity of	closed return	1936-38	28.2	open	2.6	60	aerodynamics of vehicles, buildings, pollutant dispersion	3D probe traversing system, modular floor, 2m-turntable
Technology and Economics open return, suction type open return, suction type open return, blower type		1936-38	10.2	open	1.4	25	drag force measurement on smaller objects	
		1984	13.6	closed	2.2	19	building and environmetal aerodynamics	long flow preparation section, adjustable roof, located outside
		1941	6	closed	0.5	18	anemometer calibration, flow around 3D traversing system ins bodies	
		2013	5	open or closed	0.35	24	vehicle aerodynamics measurements	closed test section can be removed for open jet configuration
	open return, blower type	2013	5.2	open or closed	1	24	flow around 2D bluff bodies and airfoils	equipped with 3-component force balance
Jniversity of c Miskolc o re	closed return	1982	13	closed	1.2	30	general fluid dynamics, boundary layer modelling	isolated wind tunnel, temperature adjustable between -10 to +50 °C
	open return/closed return	2009	8.6	closed	0.5	30	fundamental fluid dynamics research	at low speeds: closed return / high speeds: open return
	open return	2012	6.5	open	0.4	6	turbulence, turbulence generator research	3D traversing system installed

Wind tunnel (WT)		Built	Total	Test section		Тор	Application area	Comment / Specialties	
Owner	Туре	[year]	lengt h [m]	Туре	Width [m]	speed [m/s]			
National Agricultural Research and Innovation Center	open return, suction type	2004	13	closed	2	3	testing of agricultural spray application techniques	adjustable roof, 2.5m turntable	
Szent István University	open return, suction type	2004	6	closed	0.5	19	calibration of anemometers		
	open return, suction type	2014	5.6	closed	1	25	calibration of anemometers		
Hungarian Meteorological Service	open return, suction type	2002	6.1	closed	0.652	50	calibration of anemometers	Theodor Friedrichs Co. Type 8420. Min. speed 0.15 m/s	
University of Debrecen, Faculty of Science and Technology	closed return	1970	12.3	closed	0.8	14	soil erosion experiments	eqipped with a particle filter	
University of Szeged, Faculty of Science and Informatics	open return blower	1980	12	closed	0.8	17	in-situ soil erosion experiments	WT without a bottom to be placed on the investigated soil surface	
University of Nyíregyháza	open return or closed return	2012	9	closed	0.25	n/a	drying research	Not operational at the moment due to change of location	

Boundary layer wind tunnel	open	closed	
applications	external air	internal air	circuit
building wind load measurements	++	-	++
aeroelastic testing	+	-	++
pollutant dispersion measurements	-	++	++
sand erosion / snow erosion / ,dirty' measurements	++	-	+ *
laser based measurement techniques	-	+	++
vehicle areodynamics	+	-	++
use during winter (below 0 deg)	-	++	++
cold weather testing (during winter)	+	-	-

* with switchable external air supply or separator behind the test section

Conclusion

- an open-return tunnel is limited in application (whether with external or with internal air)
- Closed circuit WT more flexible

- 1. Budapest world heritage conservation area (buffer zone)
- 2. Access for users of neighbouring laboratories and workshops
- 3. Campus promenade (limits length)

DESIGN VARIANTS

- 1. Budapest world heritage conservation area (buffer zone)
- 2. Access for users of neighbouring laboratories and workshops
- 3. Campus promenade (limits length)

DESIGN VARIANTS

Version A – original design

- Wind tunnel using external air but placed inside a closed laboratory
- Multiple fans to save length
- Optional forward test section

Campus promenade

DESIGN VARIANTS

Version A

CFD SIMULATION OF THE INLET FLOW CONDITIONS AT VERSION A

Excerpt of CFD simulations performed by Péter Tóth

- Longitudinal vortex inside the contraction caused by assymmetric inflow
- Reduction of vortex strength through contraction design changes

Version B – improved design

- Same as A, but:
- Movable wind tunnel : winter operation with internal air (speed limited)

Version C

- New closed-circuit wind tunnel (returning leg <u>under ground level</u>)
- Use of external air optionally
- · Vertical wind tunnel abandoned

18

ANSWERS

- All 3 boundary layer wind tunnel types can be realized at the site
- Open return comes with serious compromises at the specific site
- Closed circuit tunnel is the ultimative solution however at high costs and with abandonement of the vertical wind tunnel

Thank you for your attention!

C)

