Budapest University of Technology and Economics Faculty of Mechanical Engineering Department of Fluid Mechanics http://www.ara.bme.hu/ ## FINAL PROJECT ASSIGNMENT ## **Publicly Available** | Identification | Name: Péter Brúnó | ID: 7334 | ID: 73347618612 | | |----------------|--|-------------------------------|---------------------------|--| | | Code of the Curriculum: 2N-MW0 | Specialisation: | Document ref. number: | | | | Curriculum: Gépészeti modellezés mesterképzési szak | 2N-MW0-FM | GEÁT:2023-1:2N-MW0:USREI6 | | | | Final Project issued by: | Final exam organised by: | | | | | Department of Fluid Mechanics | Department of Fluid Mechanics | | | | | Supervisor: Lukács Eszter (72013534433), assistant 1 | research fellow | | | | | Title | CFD analysis of a Formula Student car with limited computational resources: the effect of the simulation parameter setup on the calculated aerodynamic characteristics | | | |---------------------|---------|---|--|--| | | | Formula Student autó korlátolt erőforrású CFD szimulációja: a szimuláció beállítási paramétereinek hatása a jármű számolt aerodinamikai tulajdonságaira | | | | Project Description | Details | Literature survey, surveying and analysing relevant resources of technical literature. Mesh independence study using the GCI method for the lift and drag coefficients. Analysis of the effect of the body of influence around the vehicle: shape and size. Comparison of the k-ω SST and the k-ε turbulence models both by using low as well as high Reynolds number wall treatment. Analysis of the effect of whole-car and half-car simulations on the aerodynamic properties of the vehicle. Documentation of the thesis in the demanded form. | | | | | Advisor | Advisor's Affiliation: Dept. Fluid Mechanics, BME 1111 Budapest, Bertalan Lajos 4-6. Advisor: Bálint Papp, PhD student | | | | - | 1st subject (group) | 2 nd subject (group) | 3 rd subject (group) | 4 th subject (group) | |------------|--|--|--|---| | Final Exam | ZVEGEÁTNW02
Computational Fluid
Dynamics | ZVEGEÁTNW03 Fluid Mechanics Measurements | ZVEGEÁTNW08 Building and Environmental Aerodynamics | ZVEGEÁTNW19 Vehicle Aerodynamics | | | Handed out: 5 September 2022 | | Deadline: 9 December 2022 | | |----------------|--|---|---------------------------|---| | Authentication | Compiled by: | Verified by: | | Approved by: | | | Lukács Eszter (72013534433)
Supervisor | <i>Dr. János Vad</i> (signed)
Head of Department | | <i>Dr. Gábor Györke</i> (signed)
Vice-Dean | | | The undersigned declares that all prerequisites of the Final Project have been fully accomplished. Otherwise, the present assignment for the Final Project is to be considered invalid. Péter Brúnó | | 7 | 1 |