

Department of Fluid Mechanics

http://www.ara.bme.hu/

FINAL PROJECT ASSIGNMENT

CLASSIFIED

Identification	Name: Olgyay Ábel		ID: 72423688630				
	Code of the Curriculum: 2N-MW0		Specialisation:	Document ref. number:			
	Curriculum: Gépészeti modellezés mesterképzési szak		2N-MW0-FM	GEÁT:2023-1:2N-MW0:GLHJ6P			
	Final Project issued by:		Final exam organised by:				
		Department of Fluid Mechanics	Department of Fluid Mechanics				
	Supervisor: Dr. Balogh Miklós (71427777405), assistant professor						
				(to a second second second			
Project Description	Title	Performance evaluation of OpenFOAM, an Open-Source simulation software in pump design					
		Az OpenFOAM nyílt forráskódú szimulációs szoftver teljesítményének értékelése szivattyú tervezése során					
	Details	1. Literature review of OpenFOAM in turbomachinery application, cloud-based OpenFOAM usage options.					
		2. Run a previously tested pump model using the OpenFOAM solver with an existing mesh, for at least six different volume flow rates.					
		3. Describe the modeling method in detail. Evaluate the delivery height, internal efficiency, flow pattern, pressure distribution, and spatial distribution of turbulent production.					
		4. Using an existing pump model, determine the pump suction capacity based on the 3% head-drop condition by changing the NPSHa value, for at least one flow rate.					
		5. Using cloud-based computing, examine how the computation time changes with the number of processor cores when using the OpenFOAM solver.					
		6. Compare the OpenFOAM results with the existing ANSYS CFD calculations and the time required for the solution when using the same processor performance.					
		7. Describing the turbulence models and cavitation models available in OpenFOAM in comparison with the					
		ANSYS CFD system.					
		8. Preparation of the thesis according to the formal requirements.					
	Advisor	Advisor's Affiliation:					
		Flowserve Hungary Services Kft., 1097 Budapest, Gubacsi út 6b.					
		Advisor: Péter Tóth, specialist engineer					

_	1 st subject (group)	2 nd subject (group)	3 rd subject (group)	4 th subject (group)
Final Exan	ZVEGEÁTNW02 Computational Fluid Dynamics	ZVEGEÁTNW03 Fluid Mechanics Measurements	ZVEGEÁTNW08 Building and Environmental Aerodynamics	ZVEGEÁTNW19 Vehicle Aerodynamics

	Llow do downty E Comptownhow 2022		Deadlines	0 December 2022	
Authentication	Handed out: 5 September 2022		Deadline: 9 December 2022		
	Compiled by:	Verified by:		Approved by:	
	Dr. Balogh Miklós (71427777405)	<i>Dr. János Vad</i> (signed) Head of Department		Dr. Gábor Györke (signed)	
	Supervisor			Vice-Dean	
	The undersigned declares that all prerequisites of th have been fully accomplished. Otherwise, the present the Final Project is to be considered invalid. 				