

Budapest University of Technology and Economics Faculty of Mechanical Engineering

Department of Fluid Mechanics http://www.ara.bme.hu/

FINAL PROJECT ASSIGNMENT

Publicly Available

dentification	Name: Zuba Péter			ID: 74400602488		
	Code of the Cu	ırriculum:	2N-MW0	Specialisat	ion:	Document ref. number:
	Curriculum:	Gépészeti mo	dellezés mesterképzési szak	2N-MV	V0-FM	GEÁT:2023-1:2N-MW0:F8K9KC
	Final Project issued by:			Final exam organised by:		
	Department of Fluid Mechanics			Department of Fluid Mechanics		
	Supervisor:	Dr. Benedek	Tamás (76511246251), assis	istant professor		

	Title	Application of vortex detection method in turbomachinery simulations
	Ti	Örvénydetektáló módszer alkalmazása forgógép-szimulációkban
	Details	Assignments of the MSc Thesis Project A
		1. Conduct a literature review regarding the topic!
		2. Run 2D simulations with different inlet parameters!
on		3. Use a vortex detection algorithm obtained from the literature!
pti		4. Formulate qualitative and/or quantitative statements on the motion of shed vortices!
cri		Assignments of the MSc Thesis Project B
Des		1. Implement the previously used vortex detection method for 3D applications!
Project Description		2. Verificate the implementation of the method in a 3D case study simulation!
		3. Investigate the tip leakage vortex in an axial flow fan's simulation result using the implemented vortex detection method!
		4. Summarize the work in the required document format of the MSc Thesis!
	Advisor	Advisor's Affiliation:
		Dept. Fluid Mechanics, BME
		1111 Budapest, Bertalan Lajos 4-6.
		Advisor: Bálint Lendvai, PhD student

_	1st subject (group)	2 nd subject (group) 3 rd subject (group)		4th subject (group)	
Final Exam	ZVEGEÁTNW02 Computational Fluid Dynamics	ZVEGEÁTNW03 Fluid Mechanics Measurements	ZVEGEÁTNW08 Building and Environmental Aerodynamics	ZVEGEÁTNW19 Vehicle Aerodynamics	

	Handed out: 5 September 2022		Deadline: 9 December 2022		
	Compiled by:	Verified by:		Approved by:	
	Dr. Benedek Tamás (76511246251)	Dr. János Vad (signed)		Dr. Gábor Györke (signed)	
Ħ	Supervisor	Head of Department		Vice-Dean	
Authentication	¥ 1				