

Faculty of Mechanical Engineerin

Department of Fluid Mechanics http://www.ara.bme.hu/

FINAL PROJECT ASSIGNMENT

Publicly Available

Identification	Name: Rochlitz Róbert Zoltán			ID: 75759495298		
	Code	of the Curriculum: 2N-MW0	Specialisat	ion:	Document ref. number:	
	Curriculum: Gépészeti modellezés mesterképzési szak		2N-MW0-FM		GEÁT:2023-1:2N-MW0:BR1B0C	
	Final Project issued by:		Final exam organised by:			
	Department of Fluid Mechanics		Department of Fluid Mechanics			
	Supervisor: Dr. Bak Bendegúz Dezső (79513977519), assistant professor					
		M. 1	<u>()</u> 1	(
	Title	Mechanistic turbulence: energy transfer in multi-degree-of-freedom nonlinear oscillators				
		Mechanisztikus turbulencia: energiatranszfer több szabadságfokú nemlineáris oszcillátorokban				
		1. Study the literature in the following fields: nonlinear vibrations, targeted energy transfer, energy				
		cascade.				
	Details	2. Prepare a computational notebook in Wolfram Mathematica environment to compute the vibration				
u		response of the proposed multi-degree-of-freedom system.				
Project Descriptio		3. Construct the frequency energy plot of the proposed system.				
		4. Analyze the response of the system for different types of excitations including impulsive and continuous harmonic forcing.				
		5. Compute the Lyaponuv exponents of the system to assess the quality of the dynamics				
		6. Incorporate nonlinear elements between the larger blocks as well and recompute the Lyapunov				
		exponents of the system.				
		7. Analyze the response of this modified system for different types of excitations including impulsive				
		and continuous harmonic forcing.				
		8. Summarize the work in the required document format of the MSc Thesis!				
	Advisor	Advisor's Affiliation:				
		Advisor: ,				

-	1st subject (group)	2 nd subject (group)	3 rd subject (group)	4 th subject (group)
Final Exan	ZVEGEÁTNW02 Computational Fluid Dynamics	ZVEGEÁTNW03 Fluid Mechanics Measurements	ZVEGEVGNW21 Unsteady Flow in Pipe Networks (BMEGEVGNW21)	ZVEGEVGNX26 Hemodynamics

	Handed out: 5 September 2022		Deadline: 9 December 2022		
Authentication	Compiled by:		d by:	Approved by:	
	Dr. Bak Bendegúz Dezső (79513977519) Supervisor		<i>János Vad</i> (signed) ad of Department	<i>Dr. Gábor Györke</i> (signed) Vice-Dean	
	The undersigned declares that all prerequisites of th have been fully accomplished. Otherwise, the present the Final Project is to be considered invalid. <i>Rochlitz Róbert Zoltán</i>	roject nt for			