Laser Doppler Anemometry

Introduction to principles and applications

Characteristics of LDA

- Velocity measurements in fluid dynamics, e.g. fluid machinery (gas, liquid)
- Up to 3 velocity components
- Non-intrusive measurements (optical technique)
- Absolute measurement technique (no calibration required)
- Very high accuracy
- Very high spatial resolution due to small measurement volume
- Tracer particles, micron o.m. are required (e.g. silicone oil in air, polyamid in water) – velocity of particles

LDA - Fringe Model

- Focused Laser beams intersect and form the measurement volume
- Interference in the plane of intersection
- Pattern of bright and dark stripes/planes

LDA Fibre Optical System

60 mm and 85 mm FiberFlow probes

The small integrated 3D FiberFlow probe

Measurement of air flow around a helicopter rotor model in a wind tunnel

Photo courtesy of University of Bristol, UK

Measurement of water flow inside a pump model

Photo courtesy of Grundfos A/S, DK

Measurement of velocity profiles in a water pipe

Velocity profile, fully developed turbulent pipe flow

Measurement of flow around a ship propeller in a cavitation tank

High-pressure axial fans

•Customized design, redesign, for industry

Topics for collaboration: STAVE - BME Dept:"Filuid: We chanics, 21 October 2009

Laser Doppler Anemometry (LDA)

Measurements on near-tip phenomena in various rotors

