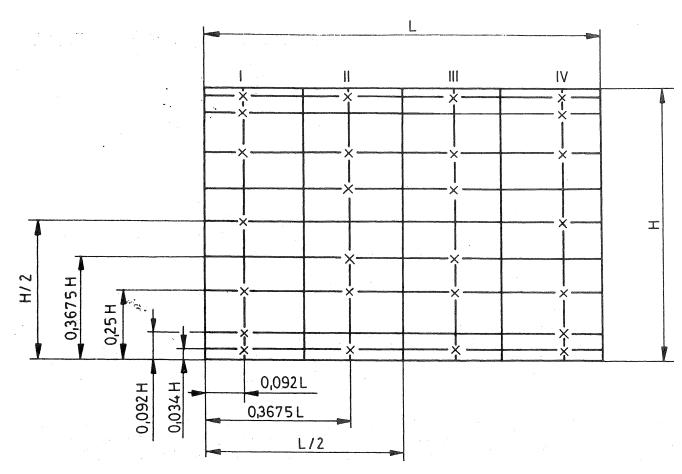

6. TRADITIONAL MEASUREMENT OF VOLUME FLOW RATE

- 6.1. Volume flow rate deduced from velocity measurement data
- 6.1.1. Application example
- 6.1.2. Principle and layouts

$$q_V = \int_{A'} \underline{v} \, \underline{dA'} = \int_{A} \underline{v} \, \underline{dA} = \int_{A} v_{\perp} \, dA$$

$$\approx \sum_{i=1}^{n} v_{\perp i} \Delta A_{i} = \Delta A_{i} \sum_{i=1}^{n} v_{\perp i}$$

$$= n \cdot \Delta A_i \left(\frac{1}{n} \sum_{i=1}^n v_{\perp i} \right) = A \overline{v}_{\perp}$$

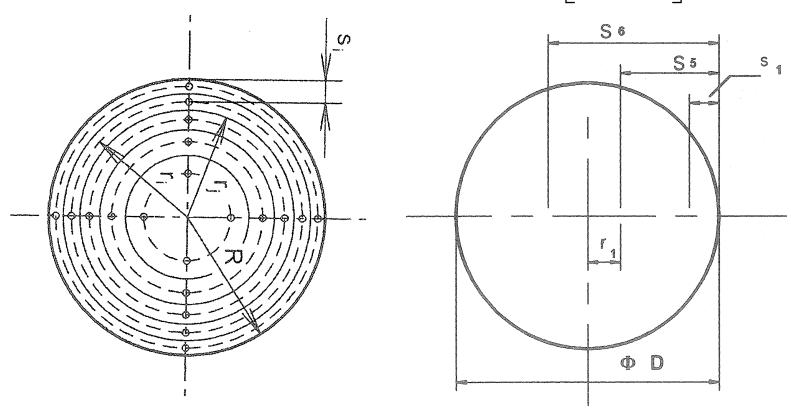


Dr. János VAD: Fluid mechanics measurements

DISCRETISATION:

For rectangular cross-sections:

- •k x k
- •Log-lin method ISO 3966-1977



Dr. János VAD: Fluid mechanics measurements

Dr. János VAD: Fluid mechanics measurements

For circular cross-sections: •10-point method

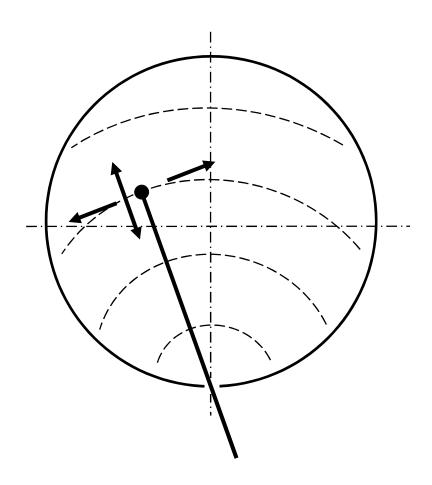
$$v(r_i) = v_{\text{max}} \left[1 - \left(\frac{r_i}{R} \right)^n \right]$$

 $s_i/D = 0.026$; 0.082; 0.146; 0.226; 0.342; 0.658; 0.774; 0.854; 0.918; 0.974

Accurate integration: for 2nd order paraboloid profile only!

•Log-lin method ISO 3966-1977

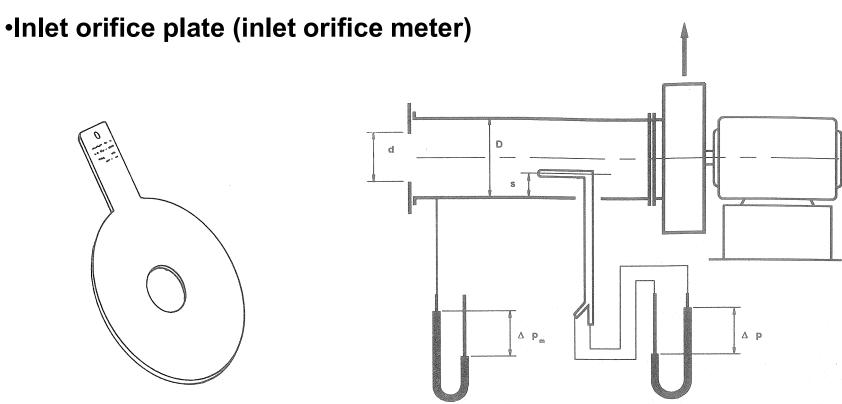
3 partial areas


$$v_i(y) = A_i \lg y + B_i y + C_i$$

$$s_i/D = 0.032$$
; 0.135; 0.321; 0,679; 0.865; 0.968

Newest standards incorporating Pitot static probes, and velocity measurements for determination of flow rate: e.g. ISO 5801:2017

"Industrial fans – Performance testing using standardized airways."


- Advantages and disadvantages
- •Quick scanning:

Dr. János VAD: Fluid mechanics measurements

6.2. Volume flow rate measurements using contraction elements

- 6.2.1. Application example
- 6.2.2. Principle and layouts

Dr. János VAD: Fluid mechanics measurements

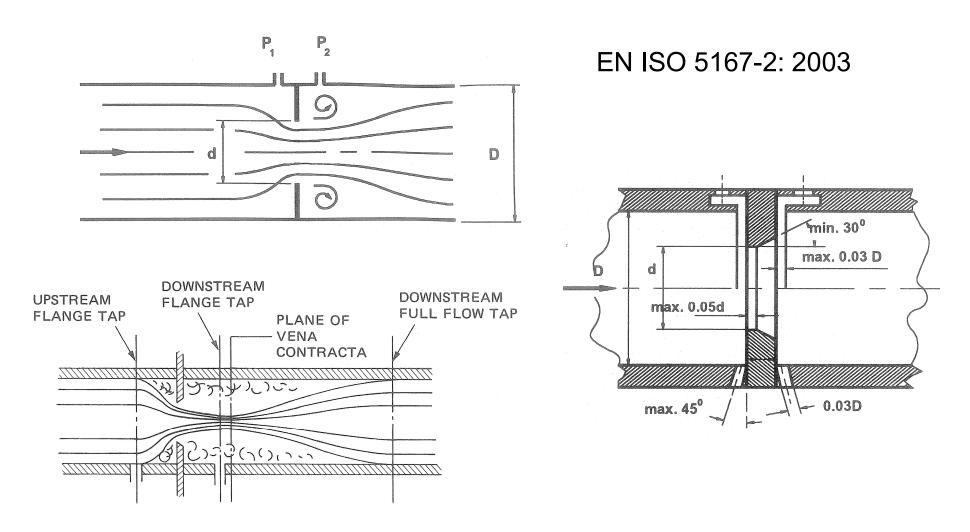
Assumption of ideal fluid: inviscid, incompressible flow

$$p_{0} = p + \rho \frac{v^{2}}{2} \qquad v = \sqrt{\frac{2}{\rho}} (p_{0} - p) = \sqrt{\frac{2}{\rho}} \Delta p_{m}$$

$$q_{V} = \frac{d^{2}\pi}{4} v = \frac{d^{2}\pi}{4} \sqrt{\frac{2}{\rho}} \Delta p_{m}$$

Reality: viscous, compressible flow

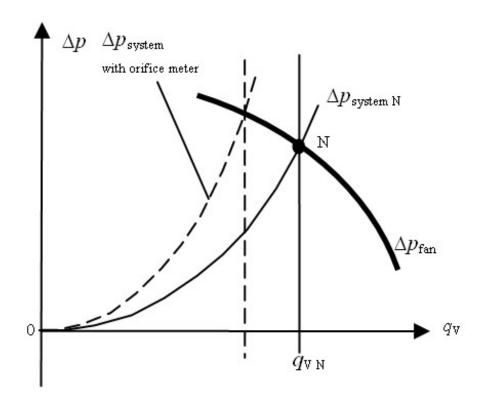
A/ Effect of viscosity


flow coefficient α dependence on d/d_in, Re
for the inlet orifice meter: α = 0.6

$$q_V = \alpha \varepsilon \frac{d^2 \pi}{4} \sqrt{\frac{2}{\rho} \Delta p_m}$$

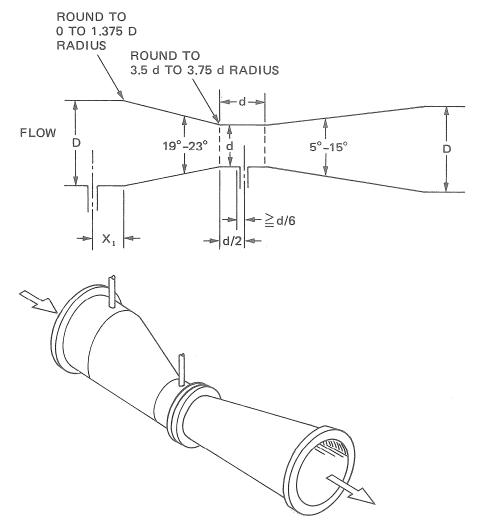
B/ Effect of compressibility

expansion coefficient ε dependence on d/d_in, Δp , p_in , κ for the inlet orifice meter: $\varepsilon = 1$


Through-flow orifice plate (through-flow orifice meter)

Dr. János VAD: Fluid mechanics measurements

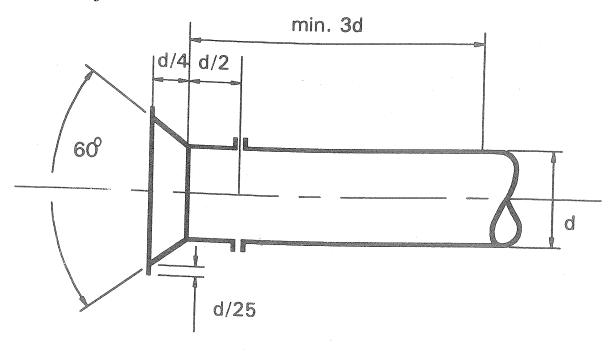
- Geometry
- •α, ε
- •Installation Examples
- Accuracy Examples
- •Problems


$$q_V = \alpha \ \varepsilon \frac{d^2 \pi}{4} \sqrt{\frac{2}{\rho} \Delta p_m}$$

Dr. János VAD: Fluid mechanics measurements

Venturi meter

EN ISO 5167-4: 2003

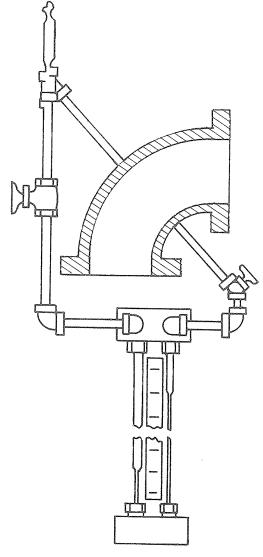

Dr. János VAD: Fluid mechanics measurements

Inlet cone

$$Re = \frac{4q_V}{\pi dV}$$

$$(\alpha \varepsilon) = 0.955 \pm 0.020$$
 if $2 \cdot 10^5 < \text{Re} < 3 \cdot 10^5$

$$(\alpha \varepsilon) = 0.960 \pm 0.015$$
 if Re > 3.10^5



Dr. János VAD: Fluid mechanics measurements

6.3. Other types of traditional flowmeters

Example:

•Elbow meter

Dr. János VAD: Fluid mechanics measurements

6.4. Comparison between volume flow rate measurement deduced from velocity data (VEL) and using contraction elements (CON)

ASPECT	CON	VEL
1/ Intrusiveness	" _ "	"+"
	Introduces considerable losses ⇒ the operating state may be modified ⇔ to be included already in the system design state	Negligible intrusiveness (wall bores)
2/ Following temporal changes in the operational state	"+" Follows unsteady flow rate continuously	"_" Does not follow (surface integration)
3/ Requirements	"_" Strict (manufacturing, installation, system is to be stopped)	"+" Moderate (no requirements, only recommendations, system may run continuously)

4/ Expenses	" <u></u> "	" + "
	High (manufacturing, installation, operation: losses to be covered)	Moderate
5/ Accuracy	" + "	" _ "
	High (limited uncertainty,	Moderate (limits of
	guaranteed by the standard)	uncertainty are not
	Legally defensible!	guaranteed)
		Legally <u>assailable!</u>

CON: high-precision, continuous, legally defensible measurements (e.g. accounting, process control, etc.)

VEL: occasional (case study) measurements, brief estimation (e.g. fault diagnostics)