Solution of systems of algebraic equations in CFD

Dr. Gergely Kristóf
26-th September 2012

The Poisson equation must be solved in every time step

$$
\begin{aligned}
& \Delta \psi=-\omega \longrightarrow \psi \\
& \Delta P=\nabla \cdot \underline{f} \longrightarrow P
\end{aligned}
$$

$$
\text { in pressure based methods: } \quad \Delta P=\nabla \cdot \underline{f} \longrightarrow P
$$

A simple 2D example

The computational domain:

We discretize this by using compass notations:
or 1-st kind)
BC of 1-st kind)

$$
\frac{1}{\Delta x}\left(\frac{\phi_{E}-\phi_{P}}{\Delta x}-\frac{\phi_{P}-\phi_{W}}{\Delta x}\right)+\frac{1}{\Delta y}\left(\frac{\phi_{N}-\phi_{P}}{\Delta y}-\frac{\phi_{P}-\phi_{S}}{\Delta y}\right)=Q_{P}
$$

$$
\begin{aligned}
& \text { On isotropic } \\
& \text { mesh: }
\end{aligned} \Delta x=\Delta y=h \quad \phi_{S}+\phi_{W}-4 \phi_{P}+\phi_{E}+\phi_{N}=h^{2} Q_{P}
$$

$$
\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}=Q
$$

Gauss elimination

As efficient as any other method for a general case, but it does not make use of the favorable characteristics of the matrix.
1-st step Elimination: $\quad A_{21} / A_{11}$ times the first row is
\(\left.\left($$
\begin{array}{lll}A_{1,1} & A_{1,2} & A_{1,3} \\
A_{2,1} & A_{2,2} & A_{2,3} \\
A_{3,1} & A_{3,2} & A_{3,3}\end{array}
$$\right) \begin{array}{l}\begin{array}{l}subtracted from the second row.

The first element of the second row

will become 0. Similarly, we

eliminate the other elements of the

second row up to the column N-1.\end{array}\end{array}\right\}\)| Repeated for |
| :--- |
| every further |
| rows. |

2-nd step Backsubstitution:
$\left(\begin{array}{ccc}U_{1,1} & U_{1,2} & U_{1,3} \\ 0 & U_{2,2} & U_{2,3} \\ 0 & 0 & U_{3,3}\end{array}\right)$

$$
\begin{aligned}
\phi_{n} & =\frac{Q_{n}}{U_{n n}} \\
\phi_{i} & =\frac{Q_{i}-\sum_{k=k+1}^{N} U_{k, i} \phi_{k}}{U_{i, i}}
\end{aligned}
$$

The operation cost of the method is $\mathrm{N}^{3} / 3$, out of which the back substitution requires only $\mathrm{N}^{2} / 2$ operations. Even if A is sparse U is not spares. The total memory requirement on a 2D mesh of 101×101 nodes is 400 Mb . We don't need such an accurate solution because the discretization error is large anyway.

In matrix form

$\phi_{S}+\phi_{W}-4 \phi_{P}+\phi_{E}+\phi_{N}=h^{2} Q_{P}$

The system now reads:

$$
A_{i, j} \varphi_{i}=Q_{i}
$$

The number of unknowns for 101×101 mesh $\mathrm{N}=10^{4}$, therefore the number of elements of matrix A is 10^{8}.

Iterative methods

The solution is refined step by step: approximation of ϕ in the n-th step is ϕ^{n}. By omitting the vector notations: $A \phi^{n}=Q-\rho^{n} \quad \rho^{n}$: residual The error: $\quad \varepsilon^{n}=\phi-\phi^{n}$ $A \varepsilon^{n}=A\left(\phi-\phi^{n}\right)=Q-\left(Q-\rho^{n}\right)=\rho^{n} \quad \begin{aligned} & \text { Thus, the exacts solution is } \\ & \text { obtained in } \mathrm{n}=1 \text { step if } \mathrm{A} \text { matrix } \\ & \text { is solved for the error. We can }\end{aligned}$ approximate A!
Iterative methods: $\quad M \phi^{n+1}=N \phi^{n}+Q$
For the converged solution: $\phi^{n+1}=\phi^{n}=\phi$, therefore: $A=M-N$
Let's subtract $M \phi^{n}$ from both sides:

$$
M\left(\phi^{n+1}-\phi^{n}\right)=N \phi^{n}+Q-M \phi^{n}=Q-A \phi^{n}=\rho^{n}
$$

correction: δ^{n}

$$
M \delta^{n}=\rho^{n} \quad \text { This is the correction equation. }
$$

The better M approximates A is the faster the method converges. M must be easy to solve eg. diagonal, tri-diagonal, or a Δ matrix.

Jacobi iteration

$\phi_{S}^{n}+\phi_{V}^{n}-4 \phi_{P}^{n+1}+\phi_{E}^{n}+\phi_{N}^{n}=h^{2} Q_{P} \quad M$ is a diagonal matrix.
$\phi_{P}^{n+1}=\frac{1}{4}\left(\phi_{S}^{n}+\phi_{W}^{n}+\phi_{E}^{n}+\phi_{N}^{n}-h^{2} Q_{P}\right)$

2 interval
Number of unknowns: $\left(2^{\mathrm{p}-1}\right)^{2}$.

Gauss-Seidel relaxation

$\phi_{S}^{n}+\phi_{N}^{n+1}-4 \phi_{P}^{n+1}+\phi_{E}^{n}+\phi_{N}^{n+1}=h^{2} Q_{P} \quad \mathrm{M}$ is a Δ matrix.

These terms are already known due to the calculation sequence
$\phi_{P}^{n+1}=\frac{1}{4}\left(\phi_{S}^{n}+\phi_{W}^{n+1}+\phi_{E}^{n}+\phi_{N}^{n+1}-h^{2} Q_{P}\right)$

- It requires halve as much iterations ... - and halve as much memory. - The error is asymmetrically distributed.

Line relaxation

Note - Much more efficient methods based on the tri-diagonal solver also exist: Operator Splitting (or Alternating Direction Implicit, ADI) methods.

The problem:
The above mentioned methods are only smoothing the solution.
The boundary effects need a very long time to penetrate the computational domain.

Solution:

We need to use coarser meshes too. The first estimates of the correction can be obtained on a coarser mesh, than can be refined on the fine mesh.

Multigrid method

The correction equation for a simplified 1D problem:

$$
\begin{gathered}
\frac{\partial^{2} \phi}{\partial x^{2}}=Q \\
\frac{1}{\Delta x^{2}}\left(\phi_{i-1}-2 \phi_{i}+\phi_{i+1}\right)=Q_{i} \\
\frac{1}{\Delta x^{2}}\left(\phi_{i-1}^{n}-2 \phi_{i}^{n}+\phi_{i+1}^{n}\right)=Q_{i}-\rho_{i}^{n} \\
\frac{1}{\Delta x^{2}}\left(\varepsilon_{i-1}^{n}-2 \varepsilon_{i}^{n}+\varepsilon_{i+1}^{n}\right)=\rho_{i}^{n}
\end{gathered}
$$

We omit the iteration indices: $\frac{1}{\Delta x^{2}}\left(\varepsilon_{i-1}-2 \varepsilon_{i}+\varepsilon_{i+1}\right)=\rho_{i}$

$$
\frac{1}{\Delta x^{2}}\left(\frac{1}{2} \varepsilon_{i-2}-\varepsilon_{i-1}+\frac{1}{2} \varepsilon_{i}+\underline{\varepsilon_{i-1}}-2 \varepsilon_{i} \underline{+\varepsilon_{i+1}}+\frac{1}{2} \varepsilon_{i} \underline{-\varepsilon_{i+1}}+\frac{1}{2} \varepsilon_{i+2}\right)=
$$

these terms are cancelled $=\frac{1}{2} \rho_{i-1}+\rho_{i}+\frac{1}{2} \rho_{i+1}$

$$
\begin{gathered}
\frac{1}{4 \Delta x^{2}}\left(\varepsilon_{i-2}-2 \varepsilon_{i}+\varepsilon_{i+2}\right)=\underbrace{\frac{1}{4}\left(\rho_{i-1}+2 \rho_{i}+\rho_{i+1}\right)}_{\substack{\text { PROLONGATION }}} \\
\frac{1}{\Delta X^{2}}\left(\varepsilon_{I-1}-2 \varepsilon_{I}+\varepsilon_{I+1}\right)=\rho_{I}
\end{gathered}
$$

Generalization to 2D or 3D:

1. Restriction: $\rho_{i} \rightarrow \rho_{l}$
2. Calculation of ε_{1}. Eg. in 3D we have an 8 fold reduced number of unknowns.
3. Prolongation of ε_{i} to the fine mesh. (ε_{i}),
4. Smoothing on the fine mesh.

Why shouldn't we use an even more coarse mesh when calculating ε_{1} ?

1. Evaluation of the residuals on the finest mesh.
2. Consecutive restrictions of ρ to every coarser mesh.
3. Solution of the system on the coarsest mesh. (Even by using a direct method.)
4. Consecutively for every finer mesh:

- Prolongation of ε

Smoothing (Eg. by using Gauss-Seidel relaxation.)
5. Correction of ϕ. (Only on the finest mesh).

Computational cost						
Number of iterations in 2D:						
p	$\mathrm{N}_{\text {line }}$	N	Jacobi	G-S	Line rlx.	Multigrid
3	7	49	40	20	10	11
4	15	225	160	80	40	24
5	31	961	640	320	160	38
6	63	3969	2560	1280	640	44
7	127	16129	10240	5120	2560	46
Number of operations / N:						
p	$\mathrm{N}_{\text {line }}$	N	Jacobi	G-S	Line rlx.	Multigrid
3	7	49	200	100	50	220
4	15	225	800	400	200	480
5	31	961	3200	1600	800	760
6	63	3969	12800	6400	3200	880
7	127	16129	51200	25600	12800	920
On fine meshes multigrid prevails!						

