Finite volume discretization

Gergely Kristóf 13-th September 2017

Approximation of surface integrals and volume integrals	
Surface integrals $\frac{\partial}{\partial t} \int_{V} \rho \Phi dV + \oint_{A} \rho \Phi \nabla \cdot d\vec{A} = \oint_{A} (\Gamma \nabla \Phi + \vec{S}_{A}) \cdot d\vec{A} + \int_{V} S_{V} dV$ Volume integrals	
$F_e = \int_{\mathcal{A}} \vec{f} \cdot d\mathcal{A} = \langle f_{\perp}$	$\langle \rangle_e A_e \cong \frac{1}{2} (\vec{f}_P + \vec{f}_E)_{\perp} A_e$ 2-nd order accurate
Compass notation:	Alternative surface integration schemes:
• • N •	$F_e \cong A_e \frac{1}{2} (\vec{f}_{ne} + \vec{f}_{se})_{\perp}$ 2-nd order accurate (trapeze method)
wwpeE	$F_e \cong \frac{A_e}{6} (\vec{f}_{ne} + 4\vec{f}_e + \vec{f}_{se})_{\perp}$ 4-th order accurate (Simpson formula)
sw se	$Q_P \cong \int_{U} q_{\phi} dV \cong q_{\phi,P} V_P$ 2-nd order accurate
•••	Interpolation of the fluxes must be at least as accurate as the integration scheme.

Finite volume approximation of spatial derivatives

The generic transport equation can be also expressed in differential form:

$$\frac{\partial \rho \phi}{\partial t} + \nabla \cdot (\rho \phi \vec{v}) = \nabla \cdot \vec{S}_A + \nabla \cdot (\Gamma \nabla \phi) + S_v$$

•

Spatial derivatives are always in div(...), grad(...) or div(grad(...)) forms.

We only need to look for the discrete approximations of these operators.

Р

 $\begin{array}{l} Coordinates \ of face \ vector\\ separating the \ \ell^{th} \ neighbor\\ are \ represented \ by \ dA_{t,i} \ ,\\ in \ which \ i=1,2,3 \ (for \ x,y,z). \end{array}$

Approximation of the divergence operator

From the volume integral of the divergence operator we can obtain the cell average of the divergence term. The Gauss-Ostrogradskij theorem for an arbitrary vector quantity:

$$\int_{V} \nabla \cdot \vec{u} \, dV = \oint \vec{u} \cdot d\vec{A}$$

The discrete representation of the divergence term is defined as a volume average over element P:

$$\widetilde{\nabla} \cdot u_i = \frac{\sum_{\ell=1}^{3} u_{\ell,i} dA_{\ell,i}}{V_P}$$

 $u_{\epsilon,i}$ are Descartes coordinates of vector \underline{u} being **interpolated** to face centroids. This expression is a linear combination of u values stored in P and in neighboring cells.

Approximation of the gradient operator

A direct consequence of the Gauss-Ostrogradskij theorem:

$$\int_{V} \nabla \phi \, dV = \oint_{A} \phi \cdot d\vec{A}$$

The i-th component of the approximate gradient can be evaluated according to the following expression:

$$\widetilde{\nabla}\Big|_i \phi = \frac{\sum_{\ell} \phi_\ell \, dA_{\ell,i}}{V_P}$$

Approximation of the Laplacian operator

 $\varDelta \phi = \nabla \cdot \nabla \phi$

The same composition can be applied for discrete operators:

 $\widetilde{\Delta}\phi = \widetilde{\nabla} \cdot \left(\widetilde{\nabla} \middle|_{\phi}\phi\right)$

For most field variables - excepting for the pressure field – the face normal component of the gradient vector can be calculated on a more simple way: from ϕ values stored in the centers of the adjacent cells. In this case the discrete form of the Laplacian operator can be calculated as a linear combination of ϕ_p and the neighboring ϕ values:

$$\widetilde{\Delta}\phi = a_P \,\phi_P + \sum a_\ell \,\phi_\ell$$

In which $a_{\rm P}$ and $a_{\rm f}$ are constant values, depending only on the mesh parameters.

Transportivity

By physical means:

T_E must have a decreasing affect on T_P for an increasing value of Pe, because the heat conduction is overridden by the adverse convective flux. Does the numerical scheme behaves so?

$$A_E = D_e - C_e / 2$$

$$C_e = \rho u \qquad D_e = \frac{\lambda}{c_v \, \Delta x} \qquad Pe = \frac{\rho u \, L}{\lambda / c_v}$$

$$A_E = \frac{D_e}{2} \left(2 - \frac{C_e}{D_e} \right) = \frac{D_e}{2} \left(2 - \frac{\rho u \, \Delta x}{\lambda / c_v} \right) = \frac{D_e}{2} \left(2 - Pe_{\Delta x} \right)$$

)

The cell Peclet number is the ratio of convective and conductive heat fluxes. In the case of Pe_{ux}>>2 the value of A_E can be a very large negative value. This is not sensible from physical point of view. This case is also numerically unstable.

