Finite volume discretization

Gergely Kristóf
13-th September 2017

Discretization of the Navier-Stokes equation
$\frac{\partial \rho}{\partial t}+\frac{\partial \rho u}{\partial x}+\frac{\partial \rho v}{\partial y}+\frac{\partial \rho w}{\partial x}=0$
$\frac{\partial \rho u}{\partial t}+\frac{\partial \rho u^{2}}{\partial x}+\frac{\partial \rho u v}{\partial y}+\frac{\partial \rho u w}{\partial y}=-\frac{\partial p}{\partial x}+\rho g_{x}+\frac{\partial}{\partial x}\left(\mu \frac{\partial u}{\partial x}\right)+\frac{\partial}{\partial y}\left(\mu \frac{\partial u}{\partial y}\right)+\frac{\partial}{\partial z}\left(\mu \frac{\partial u}{\partial z}\right)$
$\frac{\partial \rho v}{\partial t}+\frac{\partial \rho v u}{\partial x}+\frac{\partial \rho v^{2}}{\partial y}+\frac{\partial \rho v w}{\partial y}=-\frac{\partial p}{\partial y}+\rho g_{y}+\frac{\partial}{\partial x}\left(\mu \frac{\partial v}{\partial x}\right)+\frac{\partial}{\partial y}\left(\mu \frac{\partial v}{\partial y}\right)+\frac{\partial}{\partial z}\left(\mu \frac{\partial v}{\partial z}\right)$
$\frac{\partial \rho w}{\partial t}+\frac{\partial \rho w u}{\partial x}+\frac{\partial \rho w v}{\partial y}+\frac{\partial \rho w^{2}}{\partial y}=-\frac{\partial p}{\partial z}+\rho g_{z}+\frac{\partial}{\partial x}\left(\mu \frac{\partial w}{\partial x}\right)+\frac{\partial}{\partial y}\left(\mu \frac{\partial w}{\partial y}\right)+\frac{\partial}{\partial z}\left(\mu \frac{\partial w}{\partial z}\right)$

It might be discretized with finite differencing schemes on an equidistant
Cartesian mesh, however...
sometimes, more
complex meshes
are necessary for
efficient solution

Curvilinear, stretched
Unstructured, hybrid

The generic conservation law

U : volume intensity of an arbitrary conserved quantity.
$\frac{\partial}{\partial t} \int_{V} U d V+\oint_{A} \vec{f} \cdot d \vec{A}=\int_{V} S_{V} d V+\oint_{A} \vec{S}_{A} \cdot d \vec{A}$
The conserved quantity per init mass of fluid:

$$
\Phi=\mathrm{U} / \rho
$$

Convective and conductive fluxes:
$\vec{f}_{C}=\rho \Phi \vec{v} \quad \vec{f}_{D}=-\Gamma \nabla \Phi$
$\frac{\partial}{\partial \mathrm{t}} \int_{\mathrm{V}} \rho \Phi \mathrm{dV}+\oint_{\mathrm{A}} \rho \Phi \overrightarrow{\mathrm{V}} \cdot \mathrm{d} \overrightarrow{\mathrm{A}}=\oint_{\mathrm{A}}\left(\Gamma \nabla \Phi+\overrightarrow{\mathrm{S}}_{\mathrm{A}}\right) \cdot \mathrm{d} \overrightarrow{\mathrm{A}}+\int_{\mathrm{V}} \mathrm{S}_{\mathrm{V}} \mathrm{dV}$
Fluxes are evaluated on the element faces.
Finite volume method is conservative: discretization errors do not produce or destroy conserved physical properties. Conservation equations are exactly fulfilled on the computational domain
\qquad

Approxima Surface integral $\begin{gathered} \frac{\partial}{\partial t_{\mathrm{V}}} \int_{\mathrm{V}} \rho \Phi \mathrm{dV}+ \\ F_{e}=\int_{A} \vec{f} \cdot d A=\langle \end{gathered}$ Compass notation:	of surface integrals and me integrals $\cdot \mathrm{d} \overrightarrow{\mathrm{~A}}=\oint_{\mathrm{A}}\left(\Gamma \nabla \Phi+\overrightarrow{\mathrm{S}}_{\mathrm{A}}\right) \cdot \mathrm{d} \overrightarrow{\mathrm{~A}}+\int_{\mathrm{V}} \mathrm{~S}_{\mathrm{V}} \mathrm{dV}$ olume integrals ${ }_{e} \cong \frac{1}{2}\left(\vec{f}_{P}+\vec{f}_{E}\right)_{\perp} A_{e}$ 2-nd order accurate Alternative surface integration schemes:
	$\begin{aligned} F_{e} \cong A_{e} \frac{1}{2}\left(\vec{f}_{n e}+\vec{f}_{s e}\right)_{\perp} & \begin{array}{l} \text { 2-nd order accurate } \\ \text { (trapeze method) } \end{array} \\ F_{e} \cong \frac{A_{e}}{6}\left(\vec{f}_{n e}+4 \vec{f}_{e}+\vec{f}_{s e}\right)_{\perp} & \begin{array}{l} \text { 4-th order accurate } \\ \text { (Simpson formula) } \end{array} \\ Q_{P} \cong \int_{V} q_{\phi} d V \cong q_{\phi, P} V_{P} & \text { 2-nd order accurate } \end{aligned}$ Interpolation of the fluxes must be at least as accurate as the integration scheme.

Finite volume approximation of spatial derivatives

The generic transport equation can be also expressed in differential form:

$$
\frac{\partial \rho \phi}{\partial t}+\nabla \cdot(\rho \phi \vec{v})=\nabla \cdot \vec{S}_{A}+\nabla \cdot(\Gamma \nabla \phi)+S_{v}
$$

Spatial derivatives are always in $\operatorname{div}(\ldots)$, $\operatorname{grad}(\ldots)$ or $\operatorname{div}(\operatorname{grad}(\ldots))$ forms
We only need to look for the discrete approximations of these operators.

Approximation of the divergence operator

From the volume integral of the divergence operator we can obtain the cell average of the divergence term.
The Gauss-Ostrogradskij theorem for an arbitrary vector quantity

$$
\int_{V} \nabla \cdot \vec{u} d V=\oint_{A} \vec{u} \cdot d \vec{A}
$$

The discrete representation of the divergence term is defined as a volume average over element P :

$$
\tilde{\nabla} \cdot u_{i}=\frac{\sum_{\ell} \sum_{i=1}^{3} u_{\ell, i} d A_{\ell, i}}{V_{P}}
$$

$\mathrm{u}_{\mathrm{f}, \mathrm{i}}$ are Descartes coordinates of vector \underline{u} being interpolated to face centroids. This expression is a linear combination of u values stored in P and in neighboring cells.

Approximation of the gradient operator

A direct consequence of the Gauss-Ostrogradskij theorem:

$$
\int_{V} \nabla \phi d V=\oint_{A} \phi \cdot d \vec{A}
$$

The i-th component of the approximate gradient can be evaluated according to the following expression

$$
\nabla \|_{i} \phi=\frac{\sum_{\ell} \phi_{\ell} d A_{\ell, i}}{V_{P}}
$$

Approximation of the Laplacian operator

$$
\Delta \phi=\nabla \cdot \nabla \phi
$$

\qquad
The same composition can be applied for discrete operators:

$$
\widetilde{\Delta} \phi=\widetilde{\nabla} \cdot(\widetilde{\nabla} \mid ; \phi)
$$

For most field variables - excepting for the pressure field - the face normal component of the gradient vector can be calculated on a more simple way from ϕ values stored in the centers of the adjacent cells.
In this case the discrete form of the Laplacian operator can be calculated as a linear combination of ϕ_{p} and the neighboring ϕ values:

$$
\widetilde{\Delta} \phi=a_{P} \phi_{P}+\sum a_{\ell} \phi_{\ell}
$$

In which a_{p} and a_{ℓ} are constant values, depending only on the mesh parameters.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Discretization

$\oint_{A} \rho u T \cdot d A_{x}=\oint_{A} \frac{\lambda}{c_{v}} \frac{\partial T}{\partial x} \cdot d A_{x}$
$\begin{gathered}\text { The numerical } \\ \text { integral of fluxes: }\end{gathered}$
$(\rho u T)_{e} \lambda-(\rho u T)_{w} A=\left(\frac{\lambda}{c_{v}} \frac{\partial T}{\partial x}\right)_{e} A-\left(\frac{\lambda}{c_{v}} \frac{\partial T}{\partial x}\right)_{w} A$
$\begin{aligned} & \text { Shorthand } \\ & \text { notations: }\end{aligned} \quad C_{e}=C_{w}=\rho u \quad D_{e}=D_{w}=\frac{\lambda}{c_{v} \Delta x}$

$$
C_{e} T_{e}-C_{w} T_{w}=D_{e}\left(T_{E}-T_{P}\right)-D_{w}\left(T_{P}-T_{W}\right)
$$

... in a more simple form: $\quad F_{e}-F_{w}=0$
in which: $\quad F_{e}=C_{e} T_{e}-D_{e}\left(T_{E}-T_{P}\right) \quad$ in the total flux. In a 3D case we would have 4 more F values.

Application of the CDS scheme

$$
C_{e} T_{e}-C_{w} T_{w}=D_{e}\left(T_{E}-T_{P}\right)-D_{w}\left(T_{P}-T_{W}\right)
$$

$$
\begin{aligned}
& \text { Face temperatures (} T_{e} \text { and } T_{w} \text {) are obtained by a linear interpolation: } \\
& {\left[\frac{C_{e}}{2}\left(T_{P}+T_{E}\right)-D_{e}\left(T_{E}-T_{P}\right)\right]-\left[\frac{C_{w}}{2}\left(T_{W}+T_{P}\right)-D_{w}\left(T_{P}-T_{W}\right)\right]=0} \\
&
\end{aligned}
$$

Since $A_{P}=A_{W}+A_{E}$, the linear equation for A_{P} can be regarded as a weighted average of the neighboring T values. T_{P} cannot be an extreme value, if the „ A " values are positive.

Solution of the system of linear algebraic equations

[^0]
Analytical solution

\qquad

\qquad
\qquad
\qquad
\qquad
Depending on context, the same equation can be called the

- convection-diffusion equation,
- advection-diffusion equation,
- advection-diffusion equ
- drift-diffusion equation,
- (generic) scalar transport equation.

Implementation in Excel macro

\qquad

\qquad

1. Similar solution is obtained with $P e=\frac{\rho u L}{\lambda / c_{v}}$
different input parameters.
2. The error reduces with N^{2}. (Second order accuracy.)
$R e=\frac{\rho u L}{\mu}$
\qquad
. Sometimes the solution
oscillates.
What is the condition for the $P e_{\Delta x}=\frac{\rho u \Delta x}{\lambda / c_{v}}>2$ onset of instabilities?
\qquad
\qquad
\qquad
\qquad

Transportivity

\qquad
By physical means:
T_{E} must have a decreasing affect on T_{P} for an increasing value of Pe ,
because the heat conduction is overridden by the adverse convective flux. \qquad Does the numerical scheme behaves so?

$$
\begin{gathered}
A_{E}=D_{e}-C_{e} / 2 \\
C_{e}=\rho u \quad D_{e}=\frac{\lambda}{c_{v} \Delta x} \quad P e=\frac{\rho u L}{\lambda / c_{v}} \\
A_{E}=\frac{D_{e}}{2}\left(2-\frac{C_{e}}{D_{e}}\right)=\frac{D_{e}}{2}\left(2-\frac{\rho u \Delta x}{\lambda / c_{v}}\right)=\frac{D_{e}}{2}\left(2-P e_{\Delta x}\right)
\end{gathered}
$$

The cell Peclet number is the ratio of convective and conductive heat fluxes In the case of $\mathrm{Pe}_{\Delta x} \gg 2$ the value of A_{E} can be a very large negative value This is not sensible from physical point of view. This case is also numerically unstable.

Further numerical experiments...
Accuracy reduced to 1 -st order.

Artificial diffusion

An important source of numerical errors. It came from the inaccurate interpolation:
\qquad

$$
T_{e}=T_{P}+\frac{\Delta x}{2} \frac{d T}{d x}+o(\Delta x)
$$

$$
F_{e}=C_{e} T_{P}+C_{e}\left(\frac{\Delta x}{2} \frac{d T}{d x}-D_{e}\left(T_{E}-T_{P}\right)\right.
$$

It is like if the heat conductivity grew.
Let's substitute the numerical approximation of
Let's substitute the numerical

$$
F_{e}=C_{e} T_{P}+\frac{C_{e}}{2}\left(T_{E}-T_{P}\right)-D_{e}\left(T_{E}-T_{P}\right)
$$

\qquad
\qquad
\qquad
\qquad
\qquad

$$
D_{e}=\frac{\lambda}{c_{v} \Delta x} \longrightarrow \frac{\lambda_{\text {artif. }}}{c_{v} \Delta x}=\frac{\rho u}{2} \longrightarrow \lambda_{\text {artif. }}=\frac{\rho u c_{v} \Delta x}{2}
$$

\qquad

$$
\begin{aligned}
& \text { Hybrid Differencing Scheme (HDS) } \\
& \text { by Spalding (1972) } \\
& \text { The positivity of the "A"s must be ensured. } \\
& \text { We need to apply unwinding only if the absolute value of } \mathrm{Pe}_{\Delta x} \text { is too high.: } \\
& P e_{\Delta x} \leq-2 \quad F_{e}=C_{e} T_{E} \\
& -2<P e_{\Delta x} \leq 2 \quad F_{e}=C_{e}\left[\frac{1}{2}\left(1+\frac{2}{P e_{\Delta x}}\right) T_{P}+\frac{1}{2}\left(1-\frac{2}{P e_{\Delta x}}\right) T_{E}\right] \\
& 2<P e_{\Delta x} \quad F_{e}=C_{e} T_{P} \quad \begin{array}{l}
\text { It is of second order accuracy for } \\
\text { conduction dominated problems. }
\end{array} \\
& \text { (For small } \mathrm{Pe}_{\Delta \mathrm{x}} \text { cases.) } \\
&
\end{aligned}
$$

Second Order Upwinding (SOU)

We can interpolate T within the simulation cell by using its gradient:

\qquad
\qquad
Wall fluxes than can be than evaluated like:

$$
T_{e}=T_{P}+\left.\frac{d T}{d x}\right|_{P} \frac{\Delta x}{2}
$$

\qquad
Gradients are calculated in 2 steps:
Firstly:
$\left.\frac{d T}{d x}\right|_{P}=\frac{T_{e}{ }^{\prime}-T_{w}{ }^{\prime}}{\Delta x}$
$T_{e}{ }^{\prime}=\frac{T_{P}+T_{E}}{2}, \quad T_{w}{ }^{\prime}=\frac{T_{W}+T_{P}}{2}$
$\frac{d T}{d}$ gradients are limited on such a way that they shouldn't introduce oscillations. For details on the gradient limiters please refer: C Hirsch, Numerical computation of internal and external flows.

The numerical diffusion in practice

2D heat transport with zero heat conductivity ($\lambda=0$).

sou

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

[^0]: We can solve this system by Gauss elimination.
 The matrix of the linear system is a tridiagonal matrix which requires only $2 n$ operations in the case of n cells.
 (This special case of the Gauss elimination is called the Thomas algorithm)
 Unfortunately, such an efficient direct solution is not possible in 2D and 3D (iterative methods must be applied).

