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ABSTRACT

The flow over an aspect ratio 1 delta wing with twin vertical tails is studied in a combined computational
and experimental investigation. This research is conducted in an effort to understand the vortex and fin interaction
process. The computational algorithm used solves both the thin-layer Navier-Stokes and the inviscid Euler equations
and utilizes a chimera grid-overlapping technique. The results are compared with data obtained from a detailed
experimental investigation. The laminar case presented is for an angle of attack of20

� and a Reynolds number of
500; 000. Good agreement is observed for the physics of the flow field, as evidenced by comparisons of computational
pressure contours with experimental flow-visualization images, as well as by comparisons of vortex-core trajectories.
While comparisons of the vorticity magnitudes indicate that the computations underpredict the magnitude in the wing
primary-vortex-core region, grid embedding improves the computational prediction.

Nomenclature

AR aspect ratio

a speed of sound

e total energy per unit volume
F;G;H inviscid fluxes

Hv viscous flux

J
transformation Jacobian,
J = @(�; �; �)=@(x; y; z)

L reference length, taken as wing root chord

M Mach number,M = fjVj=ea
p static pressure
p0 stagnation pressure

_q heat flux terms
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Q conservation variables

Re Reynolds number,Re = e�1fjVj
1

eL=e�1

t time

s semispan
U;V;W contravariant velocities

u; v; w Cartesian velocities inx; y; z directions
V velocity vector, (u; v; w)

jVj total velocity

x; y; z Cartesian coordinates

� angle of attack

 ratio of specific heats,
 = 1:4

� difference operator

� bulk viscosity coefficient

� molecular viscosity coefficient

�; �; � general curvilinear coordinates

� total flow angle

� density

� Prandtl number
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� shear stress tensor


 vorticity vector, (
x, 
y, 
z)

Subscripts:

x; y; z denotes differentiation with respect to
x; y; z

1 denotes free-stream conditions

Superscripts:b denotes quantities in generalized
coordinatese denotes dimensional value

Introduction

Modern fighter aircraft have been designed for ex-
treme maneuverability at high angles of attack. To
achieve the required level of agility, highly swept plan-
form surfaces have often been incorporated into the
aircraft design to take advantage of the leading-edge
vortices that are generated. Some of today’s fighter air-
craft, such as the F-18, have been designed with twin
vertical tails located aft of the highly swept wings, in
the path of the vortical flow field. At sufficiently high
angles of attack, vortex breakdown can occur, which
can lead to severe buffeting and potential structural fa-
tigue in the tails.

Because the F-18 has encountered such problems,
considerable effort has recently been directed toward
understanding the physics of the vortex and tail inter-
action. Numerous experimental studies of this process
have been conducted with the F-18.1,2,3 Rizk et al.4,5

computationally modeled the F-18 to study the effects
of the wing vortices on the vertical tails. For the cur-
rent investigation, an aspect ratio 1 delta wing with
vertical tails has been modeled computationally for
comparison with results from a detailed experimental
investigation.6 This simplified geometry has been cho-
sen to focus on only the vortex and tail interaction
process; other features of the full-scale aircraft have
been ignored in this analysis.

Cooperative studies with the Navier-Stokes code
“CFL3D” for the computational investigation and
NASA Langley’s Basic Aerodynamic Research Tun-
nel for the experimental work have already exam-
ined the capability of CFL3D to accurately capture
the delta-wing flow-field properties. In the previous
studies, CFL3D correctly predicted the size and shape
of the wing primary vortex, but revealed a deficiency
in primary-vortex-core strength when compared with

the experimental results.7 A subsequent study uti-
lized a grid-embedding technique to refine the mesh in
the primary-vortex region, which resulted in improved
agreement with the experimental data.8 As an exten-
sion of the previous efforts, the current computational
research investigates the flow field over an aspect ratio
1 delta wing with vertical tails.

For the computational study, the chimera, or grid-
overlapping, technique developed by Benek et al.9 has
been employed. The chimera method has been utilized
for a variety of applications that include transonic wall
interference,10 F-18 flow-field calculations,11 and the
Space Shuttle launch vehicle.12 With the chimera tech-
nique, grids for individual components of a configu-
ration can be generated independently of one another.
This feature is particularly desirable for the present ap-
plication because delta-wing meshes generated for pre-
vious applications can be utilized. An independently
generated tail grid can then be inserted into the domain
of the delta-wing grid. Communication between the
grids is achieved through interpolation stencils.

The aspect ratio 1 (76� sweep) delta-wing model,
which is used both computationally and experimentally,
has a sharp leading edge, a flat upper surface, and a tri-
angular cross section. The wing is thin; a maximum
thickness of 2.1 percent of the root chord occurs atex=eL = 0:9. The tails are located behind the wing atey=es = 0:78 andex=eL = 1:06 (referenced from the apex
of the wing to the tail leading edge). The tails are
oriented normal to the wing upper surface and have a
leading-edge sweep of62:5� and a taper ratio of 0.23.
The test configuration selected for the present study
was based on a previous parametric study conducted by
Washburn et al.6 This tail position reflected the low-
est buffeting levels of the nine configurations tested.
At the test incidence of� = 20�, breakdown was not
observed. In addition, a strong tail vortex formed and
interacted with the delta-wing vortex. The computa-
tional model differs from the experimental model in
the tail support mechanism. In the experiment, the tails
were placed in cylindrical tail-support booms aft of the
wing. For the computations, the wing and tail were
“magnetically suspended,” so that no support mecha-
nisms existed.

While the ultimate objective of the delta wing
with tails investigation is to understand the unsteady
tail-buffeting phenomena, the present study is for a
case without vortex breakdown. The computations and
the experiment were performed with an angle of at-
tack of 20� and a Reynolds number of500; 000, for
which a laminar boundary layer results. For the ex-
periment, which was performed in an atmospheric tun-
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nel,M
1

= 0:05 corresponded to the velocity required
for the chosen Reynolds number. For the computa-
tion, M

1
= 0:3 because CFL3D is a compressible

flow solver, and convergence is slow for very low
Mach numbers. In the following sections, the govern-
ing equations for the computational method are given
and a description of the chimera grid system is pro-
vided. A description of the experimental technique is
also given. Results for the computational and experi-
mental comparisons are provided in the last section.

Numerical Method

Governing Equations

The computational algorithm employed is the
three-dimensional Navier-Stokes code CFL3D devel-
oped by Thomas et al.13 The governing equa-
tions, which are the thin-layer approximations to
the three-dimensional time-dependent compressible
Navier-Stokes equations, can be written in terms of
generalized coordinates as

@ bQ
@t

+
@bF
@�

+
@ bG
@�

+
@
�bH � bHv

�
@�

= 0 (1)

where
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U = �xu+ �yv + �zw

V = �xu+ �yv + �zw

W = �xu+ �yv + �zw

(7)

A general, three-dimensional transformation be-
tween the Cartesian variables (x; y; z) and the gener-
alized coordinates(�; �; �) is implied in equation (1),
where� corresponds to the coordinate that is normal
to the body surface. The vectorQ represents density,
momentum, and total energy per unit volume;p is the
pressure defined from the equation of state for an ideal
gas:

p = (
 � 1)

h
e�

�

2

�
u2 + v2 +w2

�i
(8)

The equations are nondimensionalized in terms
of the free-stream densitye�

1
, the free-stream speed

of soundea
1

, and the free-stream molecular viscosity
coefficient e�

1
. The shear stress and heat flux terms

are defined in tensor notation (summation convention
implied) as

�xixj
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M
1

Re

�
�

�
@ui

@xj
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@uj
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�
+ �

@uk

@xk
�ij

�
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= �

�
M
1

Re�(
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�
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@xi

bxi
= uj�xixj

� _qxi

(9)

The chain rule is used to evaluate derivatives with
respect to(x; y; z) in terms of(�; �; �). Consistent with
the thin-layer assumption, only those derivatives in the
direction normal to the wall (�) are retained in the shear
stress and heat flux terms. Equation (1) is closed by the
Stokes hypothesis for bulk viscosity(�+ 2�=3 = 0)

and Sutherland’s law for molecular viscosity.14

The CFL3D code also has the capability to solve
the Euler equations, which are obtained when thebHv

term is omitted from equation (1). Both the Euler and
Navier-Stokes equations are utilized for the delta-wing
and vertical-tail configuration. The laminar Navier-
Stokes equations are employed for the flow over the
wing. Because the main item of interest for this study
is the interaction of the wing vortex with the tail and
not the tail viscous effects, the Euler equations are used
to describe the flow field on the tail grid.
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Grid System

The delta-wing and vertical-tail configuration is
modeled with four grids—a delta-wing grid and three
grids that describe the vertical tail. Figure 1 illustrates
a typical delta-wing grid. Although the delta wing grid
has 65 points in the circumferential direction, 65 points
in the radial direction, and 53 points in the longitudinal
direction, a coarser grid is shown here for clarity. The
grid extends about 1 root chord both upstream and
downstream of the wing and approximately 1.5 root
chord lengths radially. The cross-sectional grids at the
apex and trailing edge are generated algebraically by a
sheared Joukowski transformation with clustering near
the wing surface to resolve viscous effects. As the
cross-sectional grids are interpolated between the wing
apex and trailing edge, the minimum spacing increases
from about4:0 � 10�5 at the apex to1:5 � 10�4 at
the trailing edge.

The vertical tail is modeled with three grids—a
main grid and two cap grids. The main tail grid,
shown in Fig. 2, was generated with the GRIDGEN
grid-generation package.15 Composed of 45 stacked
O-meshes, the tail grid has 65 points circumferentially
and 33 points radially. Because tail viscous effects
are not considered here, inviscid spacing is used in the
direction normal to the tail. The tail grid system is
completed with two cap grids that define the upper and
lower surfaces of the tail. The cap grids are each of
dimensions9� 11� 33 and maintain the spacing used
in the main tail grid. The lower surface cap grid, along
with an O-mesh cross section from the main tail grid,
is depicted in Fig. 3.

The delta-wing grid and tail grids communicate
with one another through interpolation stencils that are
obtained with the grid-overlapping (or chimera) scheme
developed by Benek et al.9 As a simplified example
of grid overlapping, consider a cross section of a wing
O-mesh that overlaps a Cartesian mesh, as shown in
Fig. 4. The wing grid creates a “hole” in the Cartesian
grid. Any cell center point of the Cartesian grid located
within this hole is designated a “hole point.” The first
two “nonhole” cell center points of the Cartesian grid
that border a hole point both vertically and horizontally
are labelled “fringe points.” In the figure, only the
upper half of the wing grid is drawn to provide a better
view of the hole and its fringe points. Each fringe point
of the Cartesian grid falls within a “target cell” of the
wing grid.

A searching algorithm is used to identify the par-
ticular eight points that surround the fringe point, which
form the hexahedral target cell. The search begins with

an initial guess for the target cell. Next, the current
target cell is isoparametrically mapped into a unit cube
in computational space. The same mapping is then
applied to the fringe point; if the mapped fringe point
lies in the same unit cube as the current target cell, then
that target cell in fact surrounds the fringe point. If the
mapped fringe point lies outside the unit cube, then the
current target cell is not the correct choice. However,
the magnitude and direction of the mapped fringe point
relative to the current target cell may be used to choose
a new guess for the target cell. The mapping process is
repeated until the correct target cell is identified. With
the correct target cell identified, the data are transferred
from the target cell to the fringe point with trilinear
interpolation in computational space. Outer boundary
values of the wing grid are determined in a similar
manner. The MultiGeometry Grid Embedder (MaG-
GiE) code, written specifically for CFL3D by Baysal
et al.,16 was used to determine interpolation informa-
tion between the grids. However, some modifications
have been made to the original version of MaGGiE.
For example, rather than use a single layer of fringe
points for the interpolations across grids as in the orig-
inal version of MaGGiE, two layers are now utilized for
greater accuracy. The interpolation and boundary sten-
cils obtained from MaGGiE provide the information
necessary for communication across the grids within
the flow solver.

For the delta-wing and tail configuration, the tail
grid creates a hole in the delta-wing grid in a manner
similar to the wing O-mesh and Cartesian grid example,
and interpolation stencils between the grids are deter-
mined with MaGGiE. Thus, the complete grid system
is composed of a tail grid, two tail cap grids, and a
delta-wing grid with a hole cut away in the region of
the tail. A partial view of this hole is shown in Fig. 5.
The total number of grid points for the configuration
is 326,984, although any points located within the hole
are omitted from the calculation.

Boundary Conditions

For the delta-wing surface, a no-slip boundary
condition is applied with the velocity set to zero, the
temperature set to free-stream total temperature, and
the pressure determined from a zero normal pressure-
gradient assumption. Symmetry conditions are applied
along the vertical plane of symmetry. A quasi-one-
dimensional characteristic analysis is used along the
far-field longitudinal and circumferential boundaries
with the assumption that free-stream conditions exist
exterior to the boundary.
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For the vertical-tail main grid and cap grids, flow
tangency is enforced at the body surface. In addition,
the density and pressure boundary points are set equal
to the first cell center values of density and pressure,
respectively. Chimera grid interpolations supply all tail
grid outer boundaries with flow-field information from
the delta-wing grid.

Experimental Method

The experimental investigation was conducted in
the NASA Langley Research Center Basic Aerody-
namic Research Tunnel. The tunnel is an open-return
wind tunnel with a closed rectangular test section that
is 28 in. (0.71 m) high, 40 in. (1.02 m) wide, and
10 ft (3.05 m) long. The maximum flow velocity in
the test section is 220 ft/sec, which yields aRe/ft of
1.4 million. The air that enters the test section is con-
ditioned by a honeycomb, four antiturbulence screens,
and a contraction ratio of 11:1. The flow conditioners
enable a low-turbulence, uniform flow with turbulence
intensities in the test section that range from 0.03 per-
cent to 0.09 percent for dynamic pressures of 3 lb/ft2

to 30 lb/ft2 (50 � fjVj
1

� 160 ft/sec).

The 76� (AR = 1) delta-wing model is shown
in Fig. 6. It has a nominally sharp leading edge,
a flat upper surface, and a triangular cross section.
The root chord is 1.5 ft (0.46 m) and the maximum
thickness is 2.1 percent of the root chord atex=eL = 0:9.
The leading-edge radius is 0.005 in. (0.13 mm), and
roughness on the upper and lower surfaces is 32�in
(0.8 �m) and 64�in (1.6 �m), respectively.

The planform was supported by a short sting
mounted on a post support. The sting was attached
to the underside of the model to reduce mounting in-
terference on the flat upper surface of the delta wing.
The post-mount height was fixed for the investigation.
Consequently, the model moved off the tunnel center-
line as the angle of attack changed.

Two measurement techniques were used for com-
parison with the computational results. Initially, a laser
light sheet was used to visualize the flow field at a se-
ries of chordwise stations. A light sheet normal to the
upper surface of the delta wing was produced by a 6-
watt argon ion beam and a cylindrical lens. The smoke,
which was vaporized propylene glycol, was introduced
upstream of the flow conditioners at the inlet.

The light-sheet flow visualizations were used to
identify global features of the flow field, to map the
vortex trajectories, and to determine the location of vor-
tex breakdown. To map the vortex trajectories, video

frames were digitally processed and displayed with
flow analysis software in three-dimensional space.17

To complement the flow visualization, flow-field
velocities and pressures were measured at the chord-
wise stationsex=eL = 1:4 and 1.6. These data were ac-
quired with a five-hole probe mounted in a five-degree-
of-freedom traverse. The nonuniform experimental
grid had a spacing ofey=es = 0:03 on the port side
of the model and a starboard spacing ofey=es = 0:015.
The grid was uniformly spaced withez=es = 0:015 in
the direction normal to the wing upper surface.

The five-hole probe can measure total flow angles
� (with respect to the probe axis) up to50� with an
associated error of�1:0� for � < 40� and�2:0� for
40� < � < 50�. The flow at these stations, however,
contained flow angles that exceeded50�. Hence, the
data were acquired with the probe set at two different
angles. Initially, the probe angle was set at0� relative
to the free-stream flow. The survey plane was then
divided into regions based on the total flow angle
relative to the probe. Regions where the flow angle
exceeded50� were measured again with the probe
inclined at�15�. The combined data set contained
no flow angles greater than49�.

Results

The flow field over a highly swept delta wing at
high angles of attack is characterized by the counter-
rotating vortices that are generated at the sharp lead-
ing edges of the wing. Figure 7 illustrates this flow
field with the nondimensional computational stagnation
pressure(ep0=ep1) contours plotted at several constantex=eL stations on the delta wing with vertical tails. The
calculation was performed with an angle of attack of
20� and a Reynolds number of500; 000. Although
the flow field was calculated for only one side of the
wing (symmetry was assumed and interactions were ig-
nored), the results have been reflected in the figure to
show both primary vortices. Also visible in the figure
are the wing secondary vortices.

A front view of the computational configuration
is presented in Fig. 8. Again, the solution is reflected
to show both sides of the wing and both tails. Yellow
particle traces, which are released near the apex of the
delta wing, track the paths of the wing primary and
secondary vortices. Red particle traces reveal two vor-
tices generated at the sharp edges of the tail. Figure 9
provides a close-up of the tail region for a better view
of the flow features. Nondimensional computational
helicity (e
eL=ea

1
� eV=ea

1
) contours have been added
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to illustrate the sizes, shapes, and relative rotational di-
rections of the wing and tail vortices. The color bars in
the figures provide a key for the helicity contour levels;
the particle traces are colored only to distinguish be-
tween the vortices originating at the wing (yellow) and
the tail vortices (red). In Fig. 9(a), the helicity con-
tours are plotted at the wing trailing edge (ex=eL = 1:0).
The helicity contours exhibit the opposing rotational
directions of the wing primary and secondary vortices.
Yellow particle traces pass through the wing primary
and secondary vortex cores. Figure 9(b) illustrates the
helicity contours atex=eL = 1:3. At this cross section,
the wing primary vortex still appears quite strong, and
the secondary vortex is beginning to diffuse. The helic-
ity contours also reveal the two vortices released from
the sharp leading edges of the tail. Red particle traces
released along the front edge of the tail pass through
the tail leading-edge vortex. Spanwise flow gives the
tail an effective angle of attack; the vortex is generated
at the highly swept, sharp leading edge of the tail in the
same manner that the wing primary vortex forms be-
cause of the wing sharp leading edge. The helicity con-
tours indicate that the tail leading-edge vortex rotates
in the opposite direction of the wing primary vortex.
Red particle traces released near the sharp edge on the
lower, outboard side of the tail pass through the sec-
ond vortex, which rotates in the same direction as the
wing primary vortex. In Fig. 9(c), the helicity contours
are plotted farther downstream atex=eL = 1:5. While
the two tail vortices still maintain their shapes at this
cross section, the wing primary vortex has practically
disappeared.

Side-by-side comparisons of the computational
and experimental flow fields are shown in Fig. 10.
On the left side of the figures, contour levels represent
stagnation pressure values obtained computationally;
on the right side of the figures, experimental smoke
flow visualizations, which are artificially colored to re-
flect the vortex shape and position, are depicted. These
flow visualizations were obtained with a recently de-
veloped technique for transferring experimental flow
visualizations into the same three-dimensional environ-
ment with the computational data.17 The yellow and
red lines track the experimental wing primary-vortex
core and the tail leading-edge vortex core, respectively.
These core paths were obtained with the method devel-
oped by Stacy et al.17 The experimental core trajecto-
ries have also been plotted on the computational side
of the figures to provide a frame of reference for the
computational core paths. In Fig. 10(a), the compu-
tational stagnation pressure contours and experimental
flow visualizations are shown at the trailing edge of

the delta wing. Good agreement is noted for the size
and shape of the wing primary and secondary vortices.
Figure 10(b) shows a similar view farther downstream
at ex=eL = 1:2. Again, the size and shape of the wing
primary vortices and the vortex-core locations are in
good agreement for the computation and the experi-
ment. At this station, the wing secondary vortex is
more pronounced on the computational side. In Fig.
10(c), the computational stagnation pressure contours
and the experimental smoke densities are illustrated atex=eL = 1:4. The tail leading-edge vortices, which have
become evident at this cross section, begin to push
the wing primary vortex inboard, which is shown by
both computation and experiment. On the computa-
tional side, the vortex generated at the sharp edge on
the lower, outboard side of the tail is also visible. No
corresponding vortex is visible on the experimental side
because of the cylindrical tail boom, which conceals
the sharp edge of the tails. In the computations, the
wing and tail are magnetically suspended and thus have
no support beam that connects the tail to the wing as
in the experiment. Figure 10(d) shows the results atex=eL = 1:5. The computations indicate less rotation of
the wing primary and tail leading-edge vortices and a
more elongated core region for the primary vortex.

In Fig. 11, the computational and experimental
wing primary and tail leading-edge vortex-core trajec-
tories are compared for both the wing alone and the
wing with vertical tails. Figure 11(a) provides an over-
head view of the wing and tail; Fig. 11(b) gives a view
from the side. Both views show close agreement be-
tween the computational and experimental results over
the wing. In the region of the tail, both the computa-
tional and experimental results indicate an upward and
outboard movement of the wing primary-vortex core
caused by the presence of the tail. A good correlation
is also seen for the tail leading-edge vortex-core path.

As indicated previously in Figs. 9 and 10, a loss
of strength in the wing primary vortex is observed
computationally as the vortex progresses downstream
of the delta wing. Likewise, in Fig. 12, a compar-
ison of computational (left) and experimental (right)
nondimensional axial vorticity (e


x

eL=fjVj
1

) levels at
ex=eL = 1:4 reveals a deficiency in the computational
vorticity magnitudes in the wing primary-vortex-core
region. This growing weakness of the computational
wing primary vortex becomes even more evident in
comparisons with experimental vorticity contours at
ex=eL = 1:6 (not shown here). Based on previous
research,8 this loss of strength can be attributed to a
lack of sufficient grid resolution in the region where
the vortex is located. Figure 13 shows the improved
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core strength predictions obtained with 2 levels of grid
embedding.

Conclusions

Computations have been performed, and an initial
experimental data base has been obtained for a delta-
wing and vertical-tail configuration in a joint effort to
understand the physics of the vortex and tail interaction
process that is encountered in modern fighter aircraft.
Comparisons have been presented for a laminar case
with an angle of attack of20� and a Reynolds number
of 500; 000. Vortex sizes and shapes from the com-
putations, as well as vortex-core trajectories, compare
favorably with the experimental results. Some differ-
ences in the wing primary-vortex shape and strength
are observed as the vortices pass over the far end of
the tail. Grid embedding improves the quality of the
solution in this region. Also, an additional vortex is
generated at the tail because of the absence of a tail
support mechanism in the computation. Future studies
will continue to investigate the unsteady phenomena
that occur at higher angles of attack.
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Figure 1. Three-dimensional
delta-wing grid (33 � 33 � 19).

Figure 2. Vertical tail surface grid and lower
portion of tail O-mesh (65 � 33 � 45).

Figure 3. Tail cap grid (9� 11� 33) below vertical
tail and vertical-tail cross-sectional O-mesh.

Target cell

Hole
Fringe points

Figure 4. Hole carved out of
Cartesian mesh for wing O-mesh.

Figure 5. Close-up of portion of hole cut
away in delta-wing mesh for vertical-tail grid.

Figure 6. Experimental model of
AR = 1 delta wing with vertical tails.
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Figure 7. Computational stagnation pressure contours.

Figure 8. Computational particle traces.

(a) ex=eL = 1:0

(b) ex=eL = 1:3

(c) ex=eL = 1:5

Figure 9. Computational helicity contours.
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(a) ex=eL = 1:0 (b) ex=eL = 1:2

(c) ex=eL = 1:4 (d) ex=eL = 1:5

Figure 10. Computational stagnation pressure contours (left side of figures)
and experimental smoke visualization images (right side of figures).

(a) Overhead view.
Figure 11. Computational and experimental vortex-core trajectories. (Continued . . . )
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(b) Side view.
Figure 11. Computational and experimental vortex-core trajectories.

Figure 12. Computational (left) and experimental (right) axial vorticity contours,ex=eL = 1:4.

Figure 13. Computational with grid embedding (left) and experimental (right) axial vorticity contours,ex=eL = 1:4.
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