Multiphase and Reactive Flow Modelling

BMEGEÁT(MW17|MG27) Part 1 K. G. Szabó

Dept. of Hydraulic and Water Management Engineering, Faculty of Civil Engineering

Active controls in this slide show

- Link to related contents
- Definition, explanation or notation
- Jump to next section
- Jump back one section
- Branch to other topics
- Go back to previous slide
- Go to main contents slide *Certain links do not work in the pdf version*

Contents

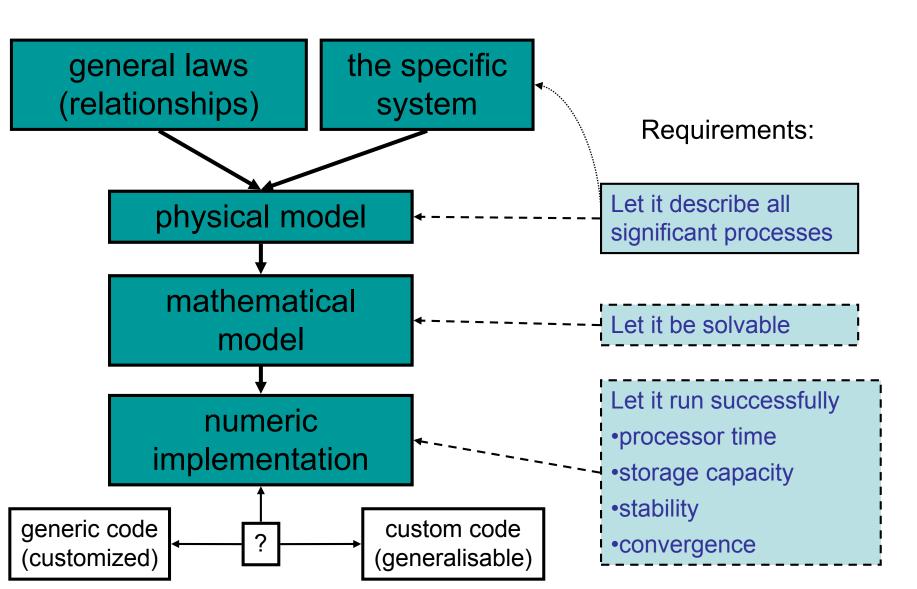
- Modelling concepts
- 2. Basic concepts
 - 3. Modelling multi-component fluids
 - 4. Multi-phase fluids
 - Notes

MODELLING CONCEPTS

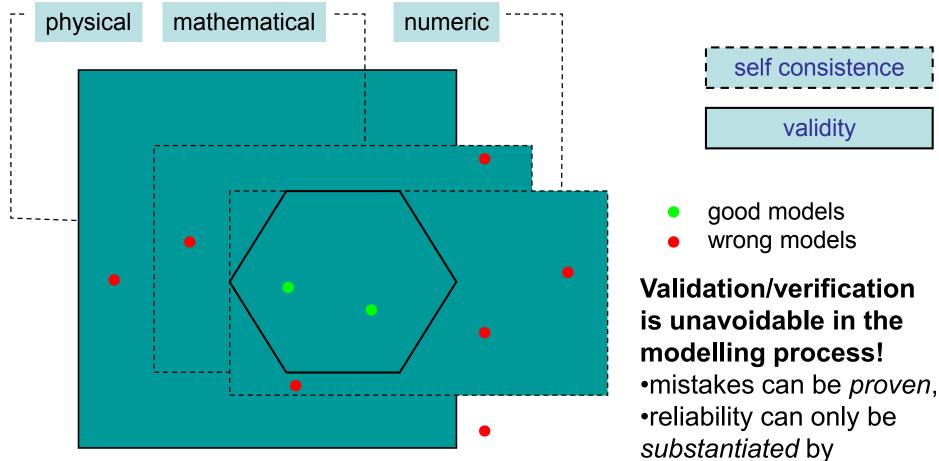
What is modelling?

- Experimental modelling
- Theoretical modelling
 - Physical model layer
 - Mathematical model layer
- Numerical modelling

Model layers



Relating model layers properly



substantiated by empirical probability

Creating a physical model

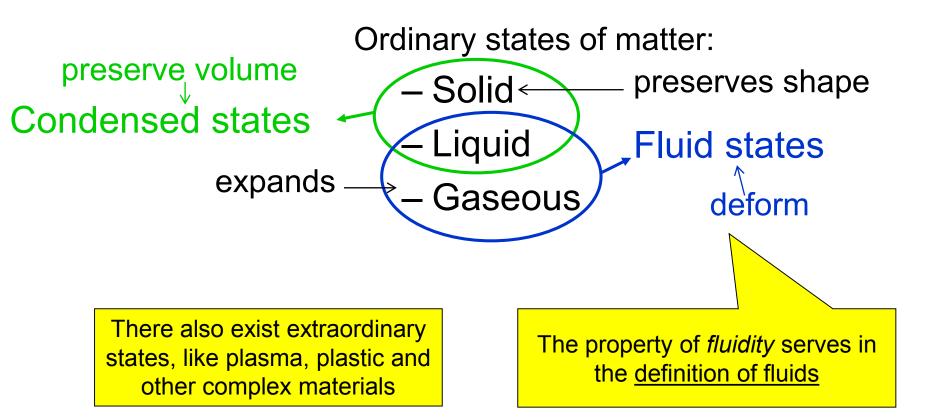
What are the significant processes?

- Include all the significant processes
- Get rid of non-significant ones
 The dimensionless numbers help us with these!
- Classify the system based on the above

Notation Terminology Phenomena Background knowledge

BASIC CONCEPTS

Classification of ordinary media



Properties and physical models of solids

Mass point model

Rigid body model

The simplest

continuum model

Even more

complex models

Properties of solids:

- Mass (inertia), position, translation
- Elastic deformations (small, reversible and linear), deformation and stress fields
- Inelastic deformations (large, irreversible and nonlinear), dislocations, failure etc.

Modelled features:

- 1. Mechanics
 - Statics: mechanical equilibrium is necessary
 - Dynamics: governed by deviation from mechanical equilibrium
- 2. Thermodynamics of solids

Properties and physical models of fluids

Key properties of fluids:

- Large, irreversible deformations
- Density, pressure, viscosity, thermal conductivity, etc.

Only continuum models are appropriate!

Features to be modelled:

- 1. Statics
 - Hydrostatics: definition of fluid (pressure and density can be inhomogeneous)
 - Thermostatics: thermal equilibrium (homogenous state) •
- 2. Dynamics
 - 1. Mechanical dynamics: motion governed by deviation from equilibrium of forces
 - 2. Thermodynamics of fluids:
 - Deviation from global thermodynamic equilibrium often governs processes multiphase, multi-component systems
 - Local thermodynamic equilibrium is (almost always) maintained ٠

Mathematical model of simple fluids

- Inside the fluid:
 - Transport equations

Mass, momentum and energy balances

- 5 PDE's for $p(t, \vec{\mathbf{r}}), \vec{\mathbf{u}}(t, \vec{\mathbf{r}})$ and $T(t, \vec{\mathbf{r}})$
- Constitutive equations

Algebraic equations for $\rho(p,T)$, $\eta(p,T)$, k(p,T), ...

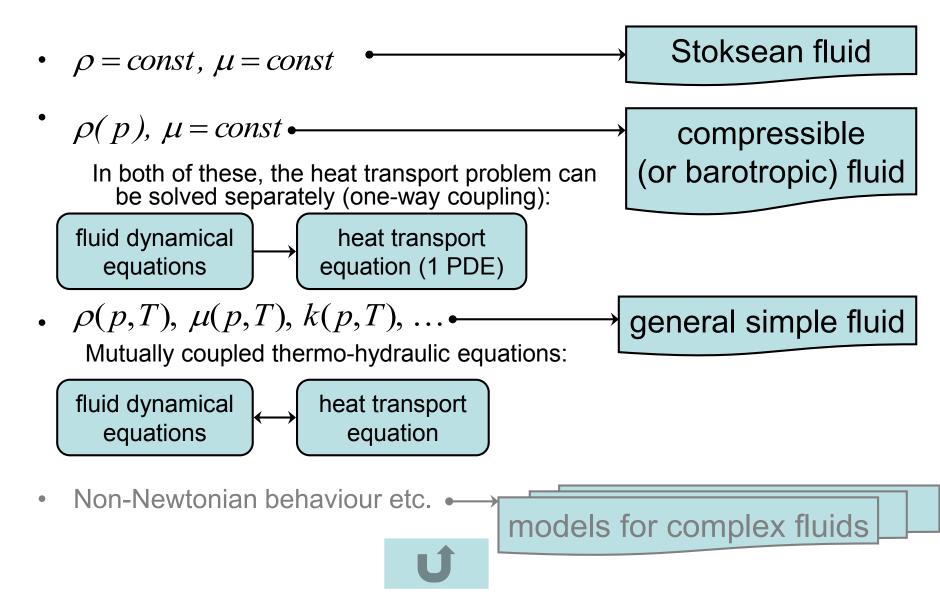
- Boundary conditions Secondary (indirect) field variables
 On explicitly or implicitly specified surfaces
- Initial conditions

Ú

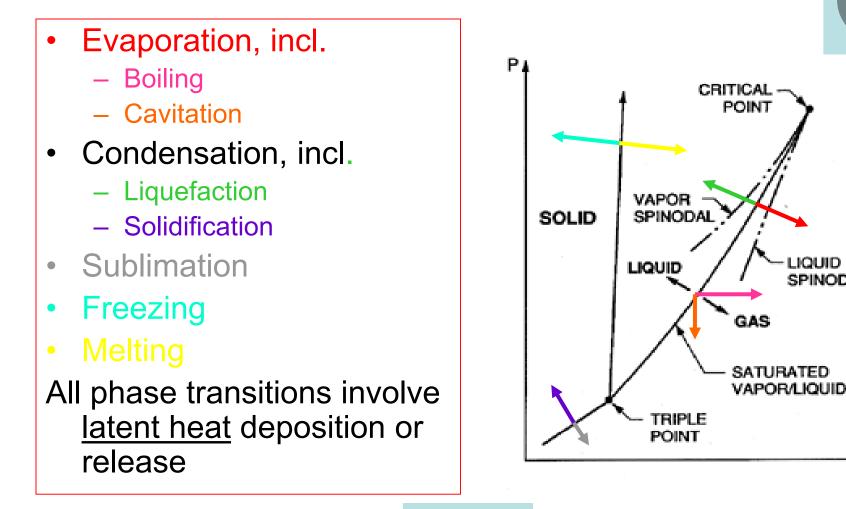
Primary (direct)

field variables

Some models of simple fluids



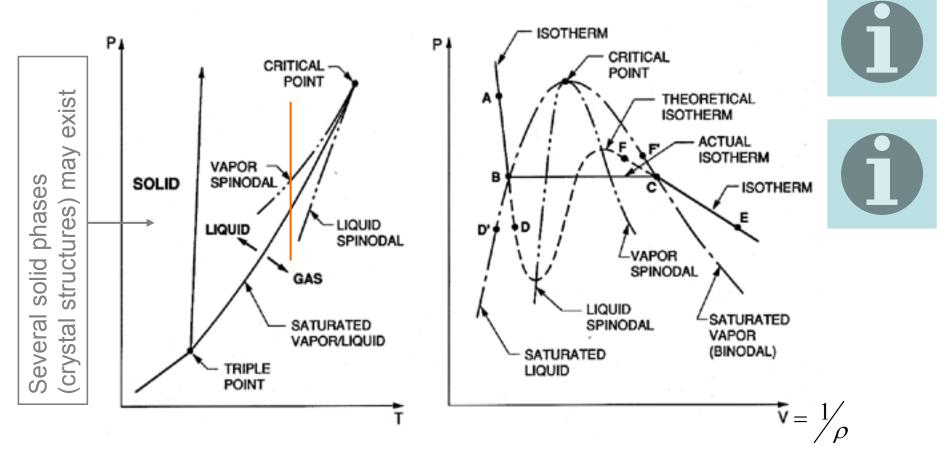
Phase transitions in case of a single compound



LIQUID

SPINODAL

Typical phase diagrams of a *pure* material:



In equilibrium 1, 2 or 3 phases can exist together

Complete mechanical and thermal equilibrium

Ú

Material properties in multi-phase, single component systems

One needs <u>explicit</u> constitutional equations for each phase.

For each phase (*p*) one needs to know:

- the thermodynamic potential
- the thermal equation of state
- the viscosity
- the heat capacity
- the thermal conductivity.

 $\mu^{(p)}(p,T)$ $ho^{(p)}(p,T)$ $\eta^{(p)}(p,T)$ $c_{p}^{(p)}(p,T)$ $k^{(p)}(p,T)$

Conditions of local phase equilibrium in a contact point in case of a pure material

• 2 phases:

 $T^{(1)}=T^{(2)}=:T$ $p^{(1)}=p^{(2)}=:p$ $\mu^{(1)}(T,p)=\mu^{(2)}(T,p)$ Locus of solution:

a line $T_s(p)$ or $p_s(T)$, the saturation temperature or pressure (e.g. 'boiling point'). • 3 phases: $T^{(1)}=T^{(2)}=T^{(3)}=:T$ $p^{(1)}=p^{(2)}=p^{(3)}=:p$ $\mu^{(1)}(T,p)=\mu^{(2)}(T,p)=\mu^{(3)}(T,p)$ Locus of solution: a point (T_t,p_t) , the triple point.

Multiple components

- Almost all systems have more than 1 (chemical) components
- Phases are typically *multi-component mixtures*

<u>Concentration(s)</u>: measure(s) of composition

There are lot of practical concentrations in use, e.g.

$$- \underbrace{\text{Mass fraction}}_{c_1} (\text{we prefer this!}) \sum_{k=1}^{k} c_k = \sum_{k=1}^{k} m_k / m = 1$$

- <u>Volume fraction</u> (used in CFD and if volume is conserved upon mixing!) $\alpha_1 = V_1/V$, $\alpha_2 = V_2/V$, ... $\alpha_k = V_k/V$, ... $\sum_k \alpha_k = \sum_k V_k/V = 1$ - Mole fraction (used in case of chemical reactions and diffusion)

$$y_1 = n_1/n, \quad y_2 = n_2/n, \dots \quad y_k = n_k/n, \dots \quad \sum_k y_k = \sum_k n_k/n = 1$$

Ú

Multiple components

Concentration fields appear as new primary field variables in the mathematical model One of them (usually that of the solvent) is redundant, not used.

$$c_k(t, \vec{\mathbf{r}})$$
 for $k = 2, \dots, K$

Material properties in multi-component mixtures

- One needs constitutional equations for each phase
- These algebraic equations depend also on the concentrations
- For each phase (*p*) one needs to know:
 - the thermodynamic potential
 - the thermal equation of state
 - the heat capacity
 - the viscosity
 - the thermal conductivity
 - the diffusion coefficients

 $\mu^{(p)}(p,T,c_1^{(p)},c_2^{(p)},...)$ $\rho^{(p)}(p,T,c_1^{(p)},c_2^{(p)},...)$ $c_p^{(p)}(p,T,c_1^{(p)},c_2^{(p)},...)$ $\eta^{(p)}(p,T,c_1^{(p)},c_2^{(p)},...)$ $k^{(p)}(p,T,c_1^{(p)},c_2^{(p)},...)$ $D_{k,\ell}^{(p)}(p,T,c_1^{(p)},c_2^{(p)},...)$

1

Conditions of local phase equilibrium in a contact point in case of multiple components

- Suppose *N* phases and *K* components:
- Thermal and mechanical equilibrium on the interfaces:

$$T^{(1)} = T^{(2)} = \ldots = T^{(N)} = : T$$

 $p^{(1)}=p^{(2)}=\ldots=p^{(N)=}:p$ $2N \rightarrow \text{only 2 independent unknowns}$

• Mass balance for each component among all phases:

$$\mu_{1}^{(1)}(T, p, c_{1}^{(1)}, c_{2}^{(1)}, \dots, c_{K}^{(1)}) = \mu_{1}^{(2)}(T, p, c_{1}^{(2)}, c_{2}^{(2)}, \dots, c_{K}^{(2)}) = \dots = \mu_{1}^{(N)}(T, p, c_{1}^{(N)}, c_{2}^{(N)}, \dots, c_{K}^{(N)})$$

$$\mu_{2}^{(1)}(T, p, c_{1}^{(1)}, c_{2}^{(1)}, \dots, c_{K}^{(1)}) = \mu_{2}^{(2)}(T, p, c_{1}^{(2)}, c_{2}^{(2)}, \dots, c_{K}^{(2)}) = \dots = \mu_{2}^{(N)}(T, p, c_{1}^{(N)}, c_{2}^{(N)}, \dots, c_{K}^{(N)})$$

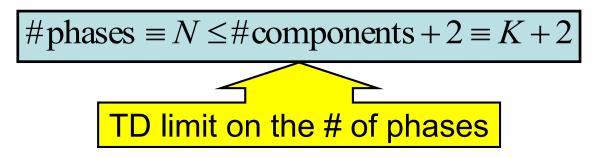
$$\vdots$$

$$\mu_{K}^{(1)}(T, p, c_{1}^{(N)}, c_{2}^{(1)}, \dots, c_{K}^{(1)}) = \mu_{K}^{(2)}(T, p, c_{1}^{(2)}, c_{2}^{(2)}, \dots, c_{K}^{(2)}) = \dots = \mu_{K}^{(N)}(T, p, c_{1}^{(N)}, c_{2}^{(N)}, \dots, c_{K}^{(N)})$$

K(N-1) independent equations for 2+N(K-1) independent unknowns

Phase equilibrium in a multi-component mixture

Gibbs' Rule of Phases, in equilibrium:



- *If there is no (global) TD equilibrium*: additional phases may also exist
- -in transient metastable state(s) or
- -in spatially separated, distant points

Miscibility

The number of phases in a given system is also influenced by the miscibility of the components:

- Gases always mix →
 Typically there is at most 1 contiguous gas phase
- Liquids maybe miscible or immiscible → Liquids may separate into more than 1 phases (e.g. polar water + apolar oil)
- 1. <u>Surface tension</u> (gas-liquid interface)
- 2. Interfacial tension (liquid-liquid interface)

(In general: Interfacial tension on fluid-liquid interfaces)

Solids typically remain granular

Topology of phases and interfaces

- A phase may be
- Contiguous

 (more than 1 contiguous phases can coexist)
- Dispersed:
 - solid particles, droplets or bubbles
 - of small size
 - usually surrounded by a contiguous phase
- Compound

Interfaces are

- 2D interface surfaces separating 2 phases
 - gas-liquid: surface
 - liquid-liquid: interface
 - solid-fluid: wall
- 1D contact lines separating 3 phases and 3 interfaces (at least)
- OD contact points with (at least) 4 phases, 6 interfaces and 4 contact lines

Topological limit on the # of phases (always local)

Special Features to Be Modelled

- Multiple components \rightarrow
 - chemical reactions
 - molecular diffusion of constituents
- Multiple phases \rightarrow inter-phase processes
 - momentum transport,
 - mass transport and
 - energy (heat) transfer

across interfaces and within each phase.

(Local deviation from total TD equilibrium is typical)

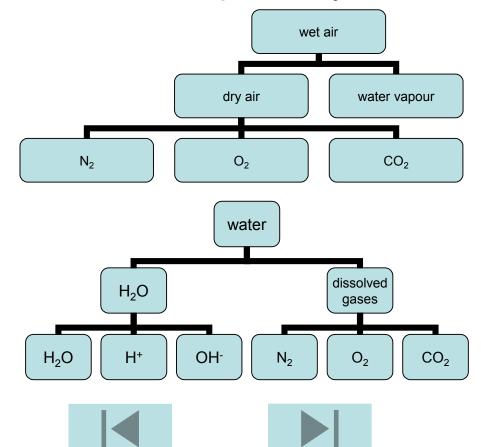
Are components = chemical species?

Not always:

- Major reagents in chemical reactions has to be modelled separately,
- but similar materials can be grouped together and treated as a single component
 - The grouping can be refined in the course of the modelling

Example:

components in an airwater two phase system

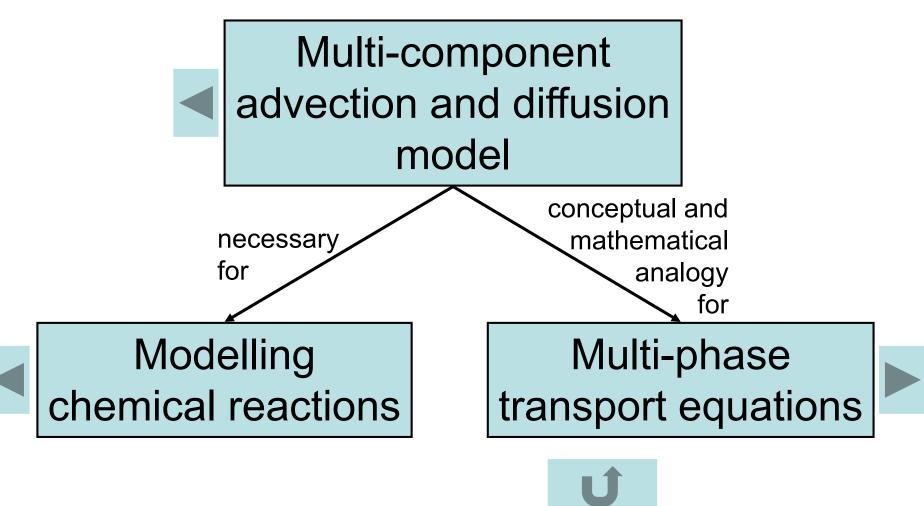


- Chemical reaction modelling
- Transport equations

Governing equations

Multi-component transport

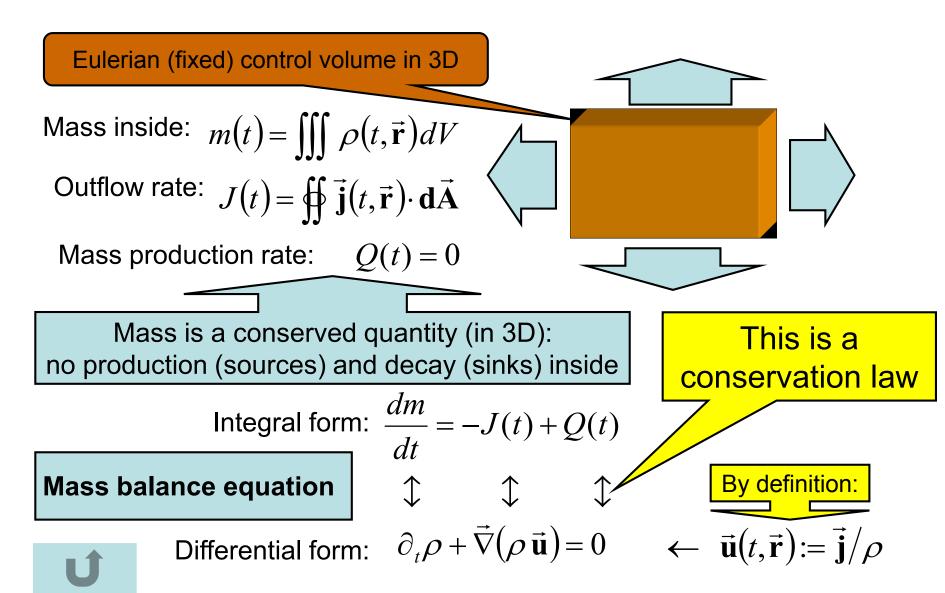
We set up transport equations for single-phase multi-component fluids



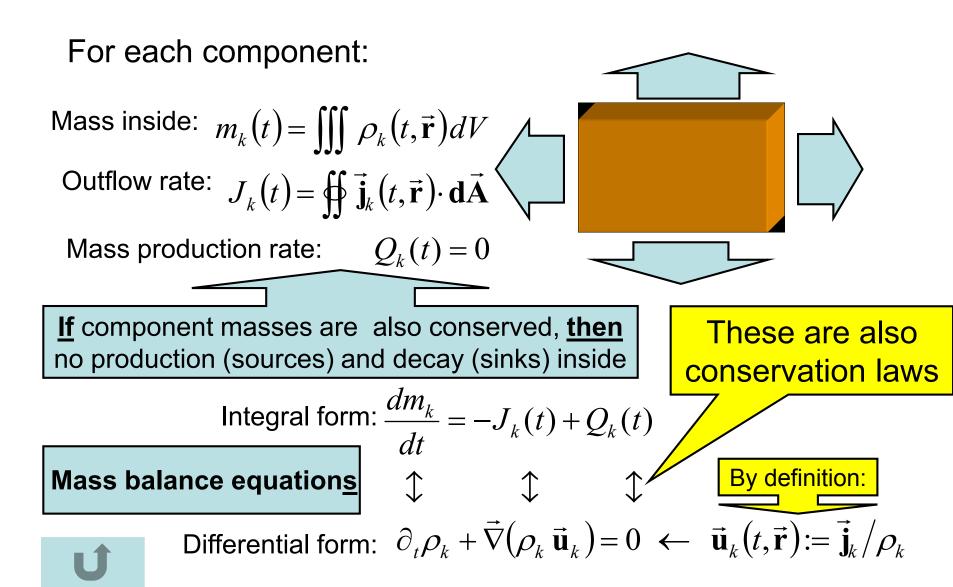
Multi-component transport Outline

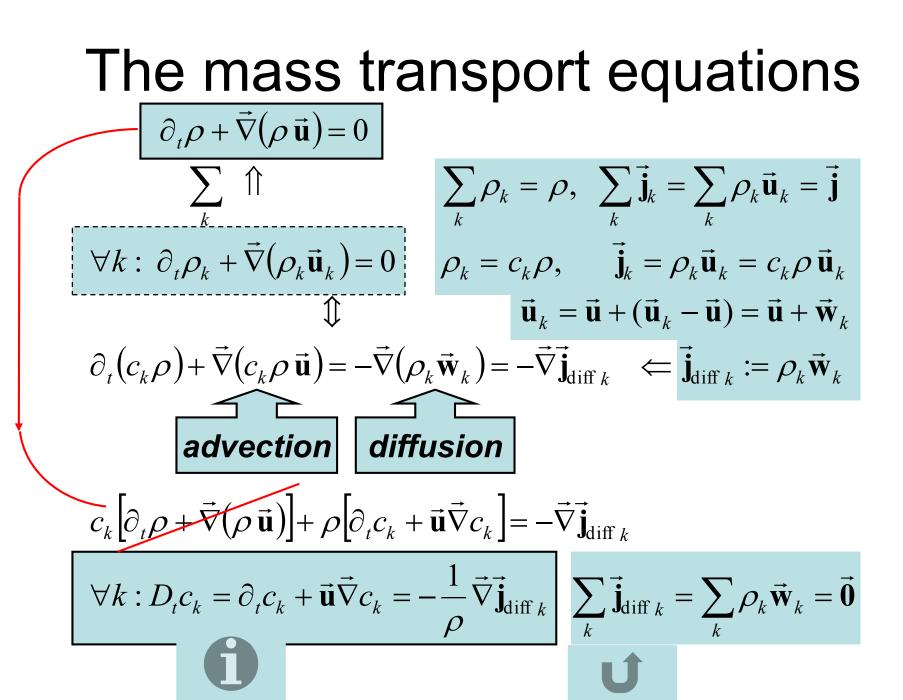
- Balance equations
 - Mass balance equation of continuity
 - Component balance
 - Advection
 - Molecular diffusion
 - Chemical reactions

Mass balance for a control volume



Component mass balance





Two ways of resolving redundancy

1. Pick exactly *K* mass transport equations and choose the *K* primary variables as follows:

$$k = 1, \dots, K: \partial_{k} \rho_{k} + \vec{\nabla} \rho_{k} \vec{\mathbf{u}} = -\vec{\nabla} \vec{\mathbf{j}}_{\text{diff } k} \qquad k = 2, \dots, K: D_{k} c_{k} = -(1/\rho) \vec{\nabla} \vec{\mathbf{j}}_{\text{diff } k}$$

2. If needed, calculate the remaining secondary variable fields from the algebraic relations:

$$\rho(t, \vec{\mathbf{x}}) = \sum_{k} \rho_{k}(t, \vec{\mathbf{x}})$$
$$c_{k}(t, \vec{\mathbf{x}}) = \rho_{k}(t, \vec{\mathbf{x}}) / \rho(t, \vec{\mathbf{x}})$$

$$- c_1(t, \vec{\mathbf{x}}) = 1 - \sum_{k=2}^{K} c_k(t, \vec{\mathbf{x}})$$
$$\rho_k(t, \vec{\mathbf{x}}) = \rho(t, \vec{\mathbf{x}}) \cdot c_k(t, \vec{\mathbf{x}})$$

Typically, this is the solvent For a binary mixture: $c_2(t, \vec{\mathbf{x}}) =: c(t, \vec{\mathbf{x}})$ $c_1(t, \vec{\mathbf{x}}) = 1 - c(t, \vec{\mathbf{x}})$

 $2 \overline{\nabla} (\overline{\nabla})$

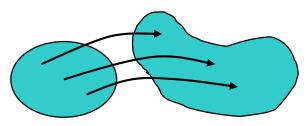
Differential forms in balance equations

Conservation of F: $F(t) = \iiint \varphi(t, \vec{\mathbf{r}}) dV = \iiint f(t, \vec{\mathbf{r}}) \cdot \rho(t, \vec{\mathbf{r}}) dV$

- equations for the density (φ)
 - general
 - only convective flux
- equation for the specific value (f)

 $\partial_t \varphi + \vec{\nabla} \cdot \vec{\mathbf{j}}_F = 0$ \Downarrow if $\vec{\mathbf{j}}_{F} = \vec{\mathbf{u}} \cdot \boldsymbol{\varphi}$ $\partial_t \varphi + \vec{\nabla} (\vec{\mathbf{u}} \cdot \varphi) = 0$ \Downarrow if *m* is conserved $D_t f \equiv \partial_t f + \left(\vec{\mathbf{u}} \cdot \vec{\nabla} \right) f = 0$ These forms describe passive advection of F

Passive advection



 The concentrations of the fluid particles do not change with time:

$$D_t c_k \equiv \partial_t c_k + \left(\vec{\mathbf{u}} \cdot \vec{\nabla} \right) c_k = 0$$

 The component densities vary in fixed proportion to the overall density:

$$\partial_t \rho_k + \vec{\nabla} (\rho_k \vec{\mathbf{u}}) = 0$$

- Computational advantage: The component transport equations uncouple from the basic fluid dynamical problem and can be solved separately and *a posteriori*
- The solution requires
 - Lagrangian particle orbits
 - Initial conditions (hyperbolic equations)

Simple diffusion models

- No diffusion → pure advection
- $\begin{cases} \partial_t \rho_k + \dot{\nabla} (\rho_k \vec{\mathbf{u}}) = 0 \\ D_t c_t = 0 \end{cases}$ $|\vec{\mathbf{j}}_{\text{diff }k} = \vec{\mathbf{0}}|$ • Equimolecular counter-diffusion • $\mathbf{j}_{\text{diff } k} = -\rho D \vec{\nabla} c_k$ for constant D and $\rho \rightarrow \begin{cases} \partial_t \rho_k + \vec{\nabla} (\rho_k \vec{\mathbf{u}}) = D \nabla^2 \rho_k \\ D_t c_k = D \nabla^2 c_k \end{cases}$ • Fick's 1st Law for each solute if $c_k \ll 1 \ (k = 2, ..., K)$ $\vec{\mathbf{j}}_{\text{diff }k} = -\rho D_k \vec{\nabla} c_k \quad \text{constant } D_k \text{ and } \rho \to \begin{cases} \partial_t \rho_k + \vec{\nabla} (\rho_k \vec{\mathbf{u}}) = D_k \nabla^2 \rho_k \\ D_t c_k = D_k \nabla^2 c_k \end{cases}$

but note that

Turbulent mixing

$$\sum_{k=1}^{K} \vec{\mathbf{j}}_{\text{diff }k} \neq \bar{\mathbf{0}}$$

 $\frac{\text{Fick's 2nd Law:}}{\partial_t c_k} = D_k \nabla^2 c_k$

Further diffusion models

- <u>Thermodiffusion</u> and/or <u>barodiffusion</u>: occur(s) at
- high concentrations
- high T and/or p gradients
- For a binary mixture:

$$\vec{\mathbf{j}}_{\text{diff}} = -\rho D \left(\nabla c + \left(k_T / T \right) \nabla T + \left(k_p / p \right) \nabla p \right)$$

 $D \cdot k_T$: coefficient of thermodiffusion $D \cdot k_p$: coefficient of barodiffusion

Analogous cross effects appear in the heat conduction equation

Further diffusion models

Nonlinear diffusion model

Cross effect among species' diffusion

Valid also at

- high concentrations
- more than 2 components
- low T and/or p gradients
- (For a binary mixture it falls back to Fick's law.)

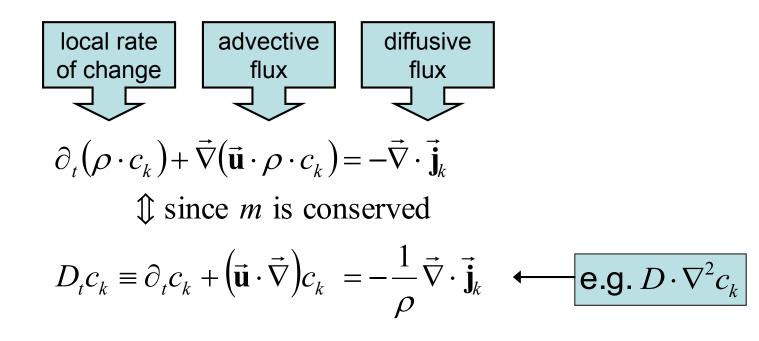
$$\vec{\mathbf{j}}_{\text{diff}\,k} = \rho \cdot \sum_{\ell \neq k} \frac{M_k}{M} \cdot \frac{\widetilde{K}_{\ell k} - \widetilde{K}_{k k}}{\det(\mathbf{K})} \cdot \vec{\nabla} y_k$$
$$\widetilde{\mathbf{K}} = \text{adj}(\mathbf{K})$$
$$K_{k \ell} = \frac{y_k}{D_{k \ell}} + \frac{M_\ell}{M_k} \cdot \sum_{s \neq k} \frac{y_s}{D_{k s}} \text{ if } k \neq \ell$$
$$K_{k k} = 0$$
$$y_k = \frac{M}{M_k} \cdot c_k : \text{ mole fraction}$$
$$M = \sum_k y_k M_k : \text{ mean molar mass}$$
$$D_{k \ell} : \text{ binary diffusion coefficien t}$$
$$D_{k \ell} (T, n, M_k, M_\ell) = D_{\ell k}$$

Further notes on diffusion modelling

- For internal consistency of the whole model
 - D has to be changed in accordance to the turbulence model (`turbulent diffusivity')
 - Diffusive heat transfer has to be included in the heat transport equation
- In the presence of multiple phases, the formulation can be straightforwardly generalised by introducing the phasic quantities

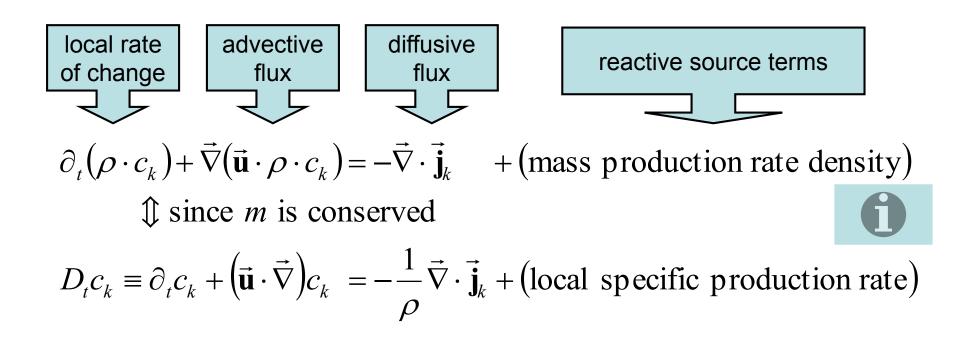
$$c_k \to c_k^{(p)}, \rho_k \to \rho_k^{(p)}, \vec{\mathbf{j}}_k \to \vec{\mathbf{j}}_k^{(p)}, \vec{\mathbf{j}}_{diff\,k} \to \vec{\mathbf{j}}_{diff\,k}^{(p)}, D_k \to D_k^{(p)} \dots$$

The advection-diffusion equations



The component masses are *conserved* but *not passive* quantities

The advection–diffusion–reaction equations

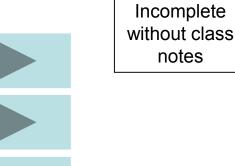


The component masses are not conserved quantities

Ú

Reaction modelling OUTLINE

- 1. Reaction stoichiometry
- 2. Reaction energetics
- 3. Reaction kinetics
- Effects in the model equations:
- reactive source terms in the advectiondiffusion-reaction equations
- reaction heat source terms in the energy (=heat conduction) equation



Incomplete

notes

Chemical reactions

 Chemical reactions are stochastic processes in which a molecular configuration of atoms transitions into another configuration

A figure showing initial and final configurations and explaining the relevant energy changes is missing from here

Energetics

forward reaction: $\Delta E > 0$ energy released $\rightarrow \underline{exothermic}$ reverse reaction: $\Delta E < 0$ energy consumed $\rightarrow \underline{endothermic}$

A binary reaction

Stoichiometry

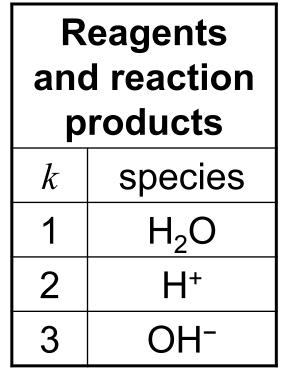
forward reaction reactant \rightarrow products

 $H_2O = H^+ + OH^-$

product — reactants

reverse reaction

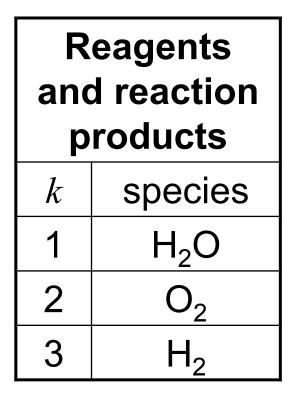
$$\forall k: |\nu_k| = 1$$



A template reaction

Stoichiometry

forward reaction reactants \rightarrow product $2 H_2 + O_2 = 2 H_2O$ products \leftarrow reactant reverse reaction



Reaction stoichiometry

Stoichiometric constants

- forward reaction:
 - + $2 \cdot H_2 O 1 \cdot O_2 2 \cdot H_2 = 0$ $v_1 = +2, v_2 = -1, v_3 = -2$
- reverse reaction:
 - $-2 \cdot H_2 O + 1 \cdot O_2 + 2 \cdot H_2 = 0$ $v_1 = -2, v_2 = +1, v_3 = +2$
- for reactants: $v_k < 0$,
- ror reaction products: $v_k > 0$
- for catalysts: $v_k = 0$

$$\sum_{k} v_{k} \neq 0$$

Reagents and reaction products species k H_2O 1 2 J_2 3

The number of molecules <u>is not</u> conserved

Reaction stoichiometry

 $M_k \cdot v_k = 0$

Stoichiometric constants

• forward reaction: + $2 \cdot H_0 O - 1 \cdot O_0 - 2 \cdot H_0 = 0$

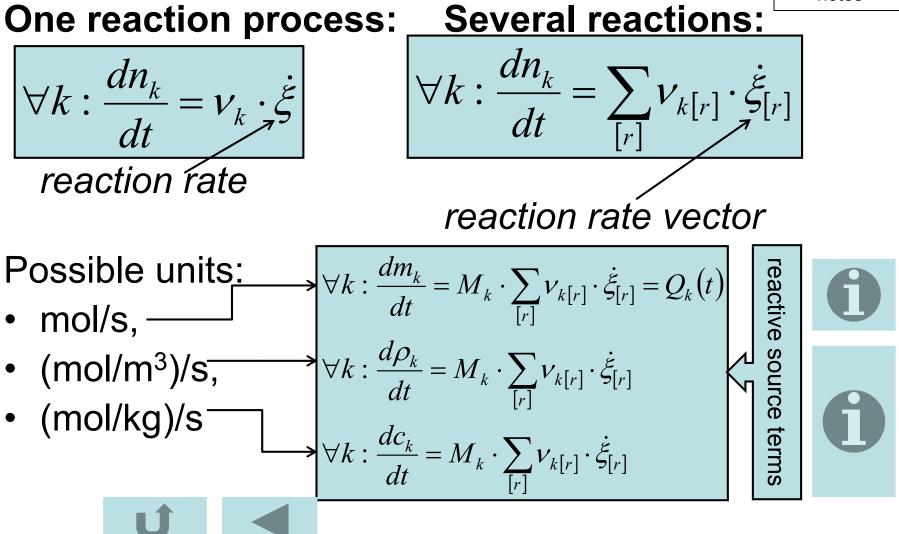
$$v_1 = +2, v_2 = -1, v_3 = -2$$

- reverse reaction:
 - $-2 \cdot H_2 O + 1 \cdot O_2 + 2 \cdot H_2 = 0$ $v_1 = -2, v_2 = +1, v_3 = +2$
- for reactants: $v_k < 0$,
- ror reaction products: $v_k > 0$
- for catalysts: $v_k = 0$

Reagents
and reaction
products
$$k$$
species k Species1 H_2O 2 O_2 3 H_2

BUT: the total mass <u>is</u> conserved

Reactive source terms



An alternative formulation:

summation over reaction pairs instead of individual reactions

$$\forall k : \frac{dm_k}{dt} = M_k \cdot \sum_{[r]} v_{k[r]} \cdot \left(\dot{\xi}_{[r]} \to \dot{\xi}_{[r]} \to Q_k(t) \right)$$

$$\forall k : \frac{d\rho_k}{dt} = M_k \cdot \sum_{[r]} v_{k[r]} \cdot \left(\dot{\xi}_{[r]} \to \dot{\xi}_{[r]} \to \dot{\xi}_{[r]}$$

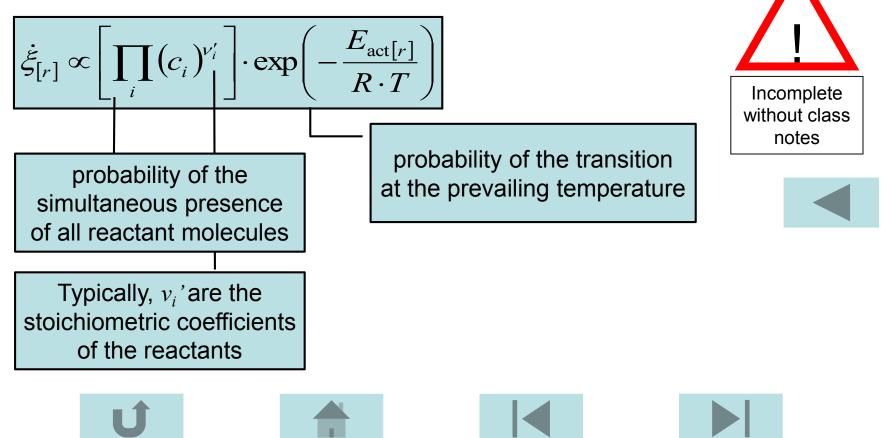
Reactive heat source terms in the energy transport equation

Energy released (or consumed) in the course of the reactions appear in the system as *reaction heat*.

The corresponding source terms in the energy balance (aka. heat transport) equation are:

Reaction kinetics

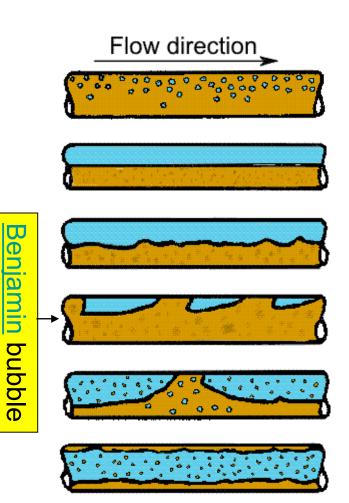
For a wide range of reactions the reaction rates look like this



Multiphase systems

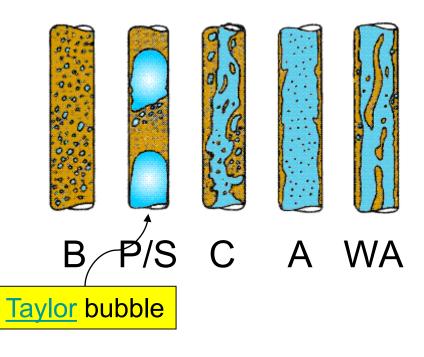
- Multiphase pipe flows
 - Physical phenomena
 - Modelling approaches
 - Quantities pertinent to multiphase phenomena
 - Special measurement techniques

Horizontal gas-liquid flow patterns



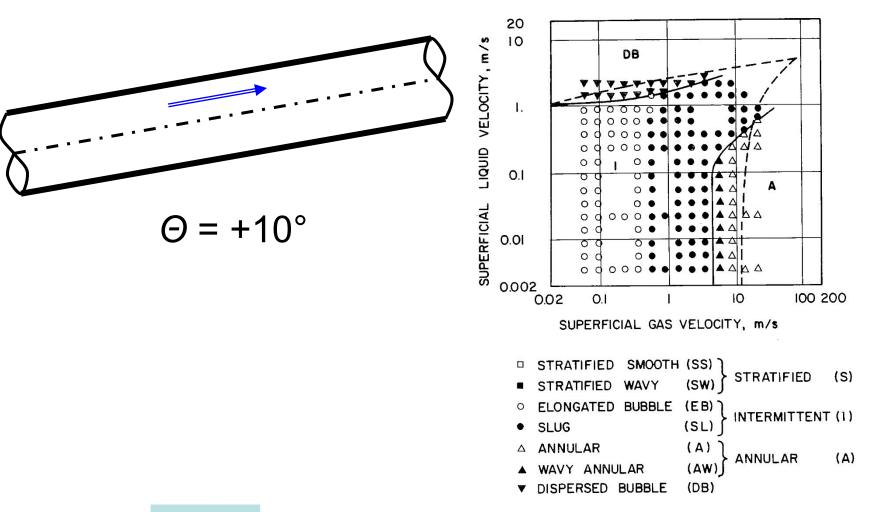
- Dispersed Bubble Flow
- Stratified Flow
- Stratified–Wavy Flow
- Plug Flow
- Slug Flow
- Annular–Dispersed Flow

Vertical gas-liquid flow patterns

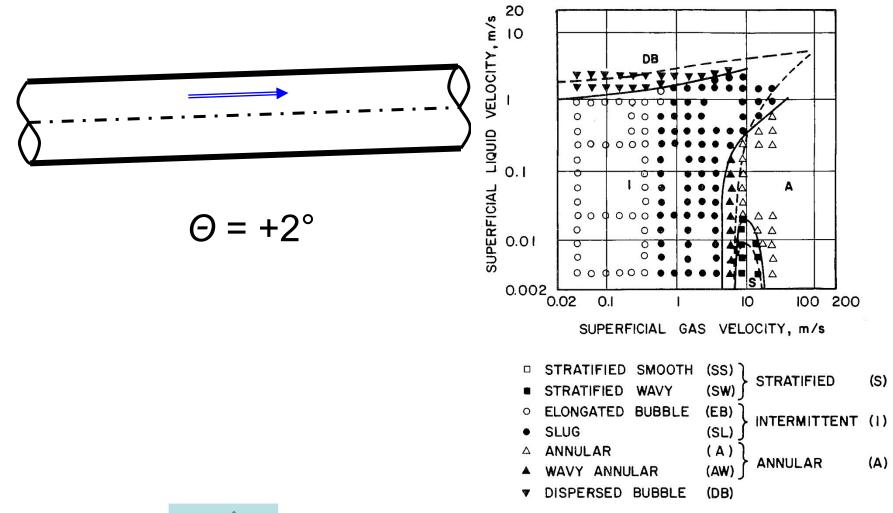


- Bubble Flow
- Plug or Slug Flow
- Churn Flow
- Annular Flow
- Wispy Annular Flow

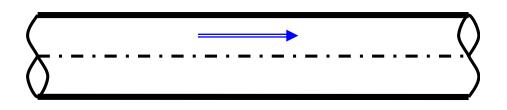
See videos at www.thermopedia.com/videos



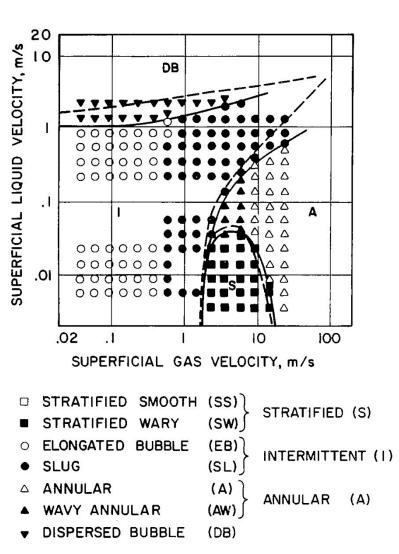
Ú

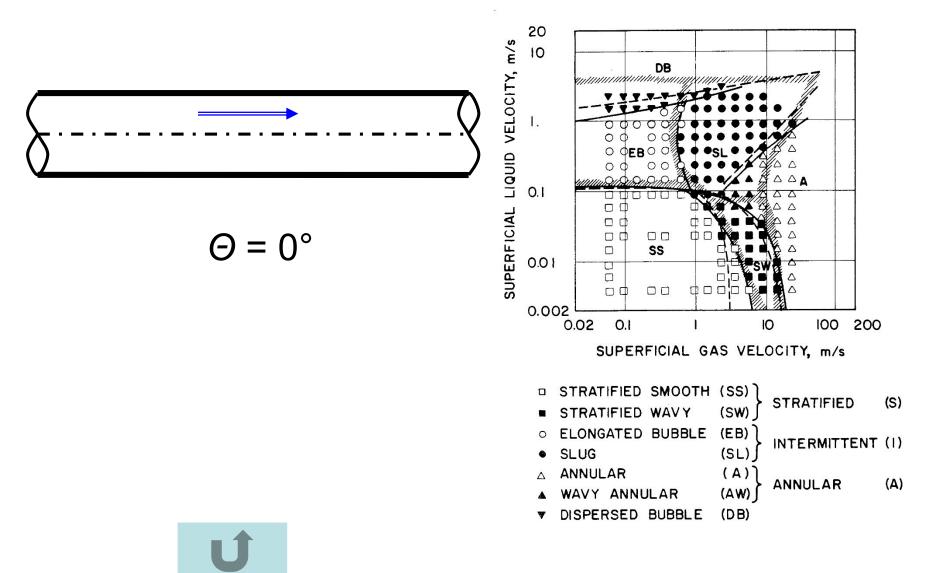


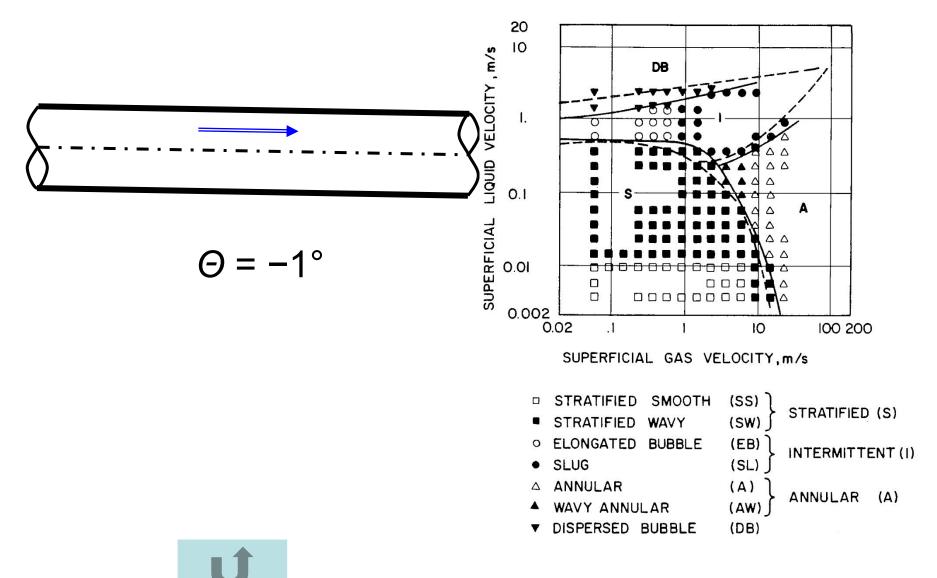
Ú

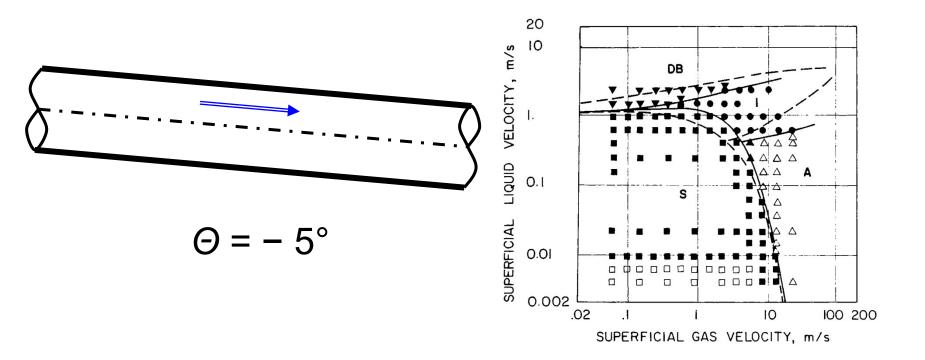


 $\Theta = +0.25^{\circ}$

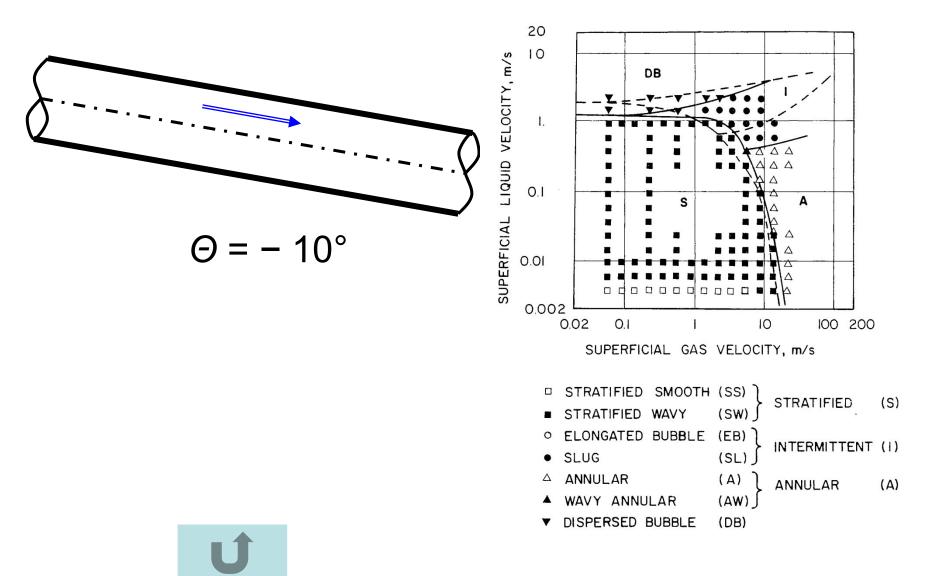








Ú



- Relative flow directions
 - Co-current flow (as shown above)
 - Counter-current flows (one of the mass flow rates is negative): some of the flow patterns exist with opposite flow directions too
- Somewhat analogous flow patterns can be identified in liquid-liquid, liquid-solid and gas-solid systems

- Even more complex flow patterns in three phase pipe flows
- Flow classification is
 - somewhat arbitrary and subjective in pipes
 - hardly possible in 3D containers
- Further points to observe:
 - Heat transfer phenomena
 - Phase transition phenomena

Pipe flow modelling alternatives

- Flow patterns
- Flow regimes
- Flow pattern maps
- Tasks:
 - Model flow region boundaries
 - Model flow behaviour within each flow region

Task:

Create a single fluid model that can correctly reflect fluid behaviour in all flow regimes and thus automatically describes flow pattern transitions

Parameters of one-phase pipe flow

<u>Control (input)</u> <u>parameters:</u>

- Pipe geometry
 - shape
 - size

Does not matter if p=const

- inclination
- wall roughness
- Mass flow rate
- Fluid properties
- External heat source

<u>Measured (output)</u> <u>parameters:</u>

- Pressure drop
 - Transported heat

Parameters of two-phase pipe flow

<u>Control (input)</u> <u>parameters:</u>

- Pipe geometry
 - shape
 - size
 - inclination
 - wall roughness
- Mass flow rates
 - Fluid properties
- External heat source

<u>Measured (output)</u> <u>parameters:</u>

- Pressure drop
- Volume (void) fraction
- Interfacial area density

Transported heat

Model variables in pipe systems

- Cross sectional integral quantities
 - linear densities

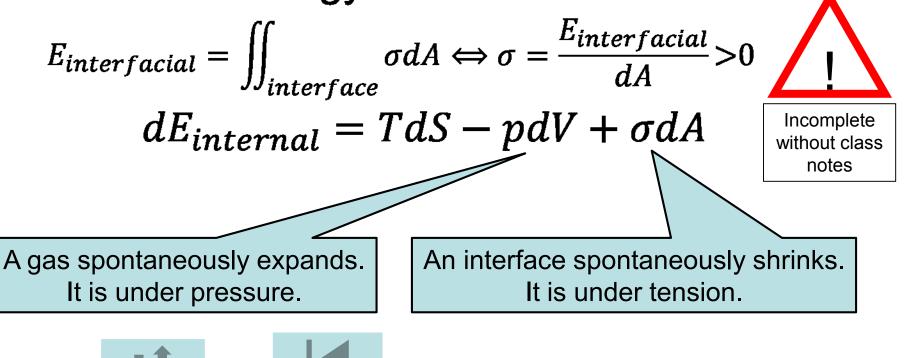
- flow rates

- Cross sectional average ('mean`) quantities
 - 'mean` densities
 - 'mean` fluxes

Purpose: reduction of independent variables: $(t, x, y, z) \rightarrow (t, x)$

Interfacial (surface) tension

- The origin and interpretation of interfacial/ surface tension (S, σ or γ)
- Interfacial energy:



Interfacial area density

• Definition:
$$\frac{A^{(ij)}}{V_{sample}}$$

?

- If high (e.g. in emulsions), then
 - substantial amount of energy can be stored in the interface

(interfacial energy density = $\sigma \cdot A^{(ij)}/V_{sample}$)

the interface can be treated as a third (extra) phase (being under tension!)

Interfacial area density

- Its importance in chemical engineering: high interfacial energy density increases rate of
 - absorption/desorption,
 - diffusion limited surface reactions,
 - catalytic reactions

Volume fraction

• Definition:

$$\alpha^{(p)} = \frac{V^{(p)}}{V_{sample}}$$

Volume fractions in gas—liquid two-phase systems

 If the volume fraction of the gas phase is used, it is often called <u>void fraction</u>:

$$\rightarrow \varepsilon = \varepsilon_{\rm G} = \alpha = \alpha^{\rm (g)}, \ \alpha^{\rm (\ell)} = 1 - \alpha$$

 If the volume fraction of the liquid phase is used, it is often called <u>liquid holdup</u>:

$$\rightarrow h = h_{\rm L} = \left| \alpha = \alpha^{(\ell)}, \ \alpha^{(g)} = 1 - \alpha \right|$$

Measurement of volume fraction

Type/definition

- Local (time averaged) $\alpha^{(p)}(x, y, z) = \overline{\alpha^{(p)}(t, x, y, z)}$
- Chordal averaged
- Cross sectional averaged $\alpha^{(p)}(t,x) = \langle \alpha^{(p)}(t,x,y,z) \rangle$
- Volume averaged $\alpha^{(p)}(t;V)$

Measurement method

- Direct volume/mass measurement
- Optical probe
- Conductivity probe
- Absorption of
 - light
 - X-ray
 - γ-ray
- neutron scattering

Superficial and phasic velocities

• Superficial velocity:

$$\langle u^{(p)} \rangle(t,x) = \frac{\dot{M}^{(p)}(t,x)}{\varrho^{(p)}(t,x) \cdot A(t,x)}$$
• Phasic (mean physical) velocity:

$$\langle u^{(p)} \rangle^{(p)}(t,x) = \frac{\dot{M}^{(p)}(t,x)}{\varrho^{(p)}(t,x) \cdot A^{(p)}(t,x)}$$
• Relationship:

$$\langle u^{(p)} \rangle(t,x) = \alpha^{(p)}(t,x) \cdot \langle u^{(p)} \rangle^{(p)}(t,x)$$
Incomplete without class notes

Balance equations of multiphase pipe flows

- General framework:
 - Mass transport equations
 - Longitudonal momentum transport
 - Energy transport

Usage of thermodynamic relations

Expressing local thermodynamic equilibrium in fluid dynamics: the use of intensive and extensive state variables

- Integral forms: intensive and extensive (X)
- Differential forms (PDE's):
 - fixed control volume (V=const): intensive and densities of the extensive ones (x=X/V)
 - advected fluid parcel (*m*=const): intensive and specific values of the extensive ones (*x=X/m*)

Note

Notational system for local extensive quantities

- For integral description (in control volumes):
 – extensive quantity: F
- For differential description (local values):

Note

- density: $\varphi = F/V = \rho \cdot f$
- specific value f = F/m
- molar value f = F/n
- molecular value $F^*=F/N$

Notations to be used (or at least attempted)

Material derivative of a specific quantity:

$$\frac{Df}{Dt} := \frac{\partial f}{\partial t} + \left(\vec{\mathbf{u}} \cdot \vec{\nabla}\right) f \longrightarrow D_t f := \partial_t f + \left(\vec{\mathbf{u}} \cdot \vec{\nabla}\right) f$$

Thermodynamical representations

Representation (independent variables)	TD potential
entropy and volume $(s, 1/\rho)$	internal energy
temperature and volume $(T, 1/\rho)$	free energy
entropy and pressure (<i>s</i> , <i>p</i>)	enthalpy
temperature and pressure (T,p)	free enthalpy

- All of these are equivalent: can be transformed to each other by appropriate formulæ
- Use the one which is most practicable: e.g., (s,p) in acoustics: $s = const \Rightarrow \rho(s,p) \rightarrow \rho(p)$.

We prefer (*T*,*p*)

Notations to be used (or at least attempted)

• Phase index (upper):

– (*p*) or

- (s), (ℓ), (g), (v), (f) for solid, liquid, gas , vapour, fluid

Note

- Component index (lower): k
- Coordinate index (lower): *i*, *j* or *t*

Examples:

$$ho^{(\mathrm{S})}, c_k^{(p)}, \, u_i^{(p)}$$

$$\partial_t, \ \partial_i (\partial_1 = \partial_x, \partial_2 = \partial_y, \partial_3 = \partial_z)$$

Jump of a function

- A point **x** is on a moving interface at *t* (given either implicitly or parametrically).
- The designated normal vector at x is n.
 Then the jump (discontinuity) of a function f is:

$$f(t, \mathbf{x} + \varepsilon \mathbf{n}) - f(t, \mathbf{x} - \varepsilon \mathbf{n}) \longrightarrow [f(t, \mathbf{x})]$$

