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MODELLING CONCEPTS



What is modelling?

• Experimental modelling

• Theoretical modelling

– Physical model layer

– Mathematical model layer

• Numerical modelling



Model layers

general laws 

(relationships)

physical modelphysical model

mathematical 

model

mathematical 

model

numeric 

implementation

numeric 

implementation

the specific 

system

Let it describe all 

significant processes

Let it be solvable

Let it run successfully

•processor time

•storage capacity

•stability

•convergence

Requirements:

generic code

(customized)
?

custom code

(generalisable)



Relating model layers properly

physical mathematical numeric

good models

wrong models

self consistence

validity

Validation/verification 

is unavoidable in the 

modelling process! 

•mistakes can be proven,

•reliability can only be 

substantiated by 

empirical probability



Creating a physical model

What are the significant processes?

• Include all the significant processes

• Get rid of non-significant ones

The dimensionless numbers help us with these!

• Classify the system based on the above



BASIC CONCEPTS

Notation

Terminology

Phenomena

Background knowledge



Classification of ordinary media

Ordinary states of matter:

– Solid

– Liquid

– Gaseous

preserves shape

Fluid states

deform

preserve volume

Condensed states

expands 

There also exist extraordinary 

states, like plasma, plastic and 

other complex materials

The property of fluidity serves in 

the definition of fluids



Properties of solids:

• Mass (inertia),
position, translation

• Extension (density, volume),
rotation, inertial momentum

• Elastic deformations (small, reversible 
and linear), deformation and stress fields

• Inelastic deformations (large, irreversible 
and nonlinear), dislocations, failure etc.

Modelled features:

1. Mechanics
• Statics: mechanical equilibrium is necessary

• Dynamics: governed by deviation from 
mechanical equilibrium

2. Thermodynamics of solids

Properties and physical models of 

solids
Mass point model

Rigid body model

The simplest

continuum model

Even more 

complex models



Key properties of fluids:

• Large, irreversible deformations

• Density, pressure, viscosity, thermal conductivity, etc. 

Features to be modelled:

1. Statics
• Hydrostatics: definition of fluid (pressure and density can be 

inhomogeneous)

• Thermostatics: thermal equilibrium (homogenous state)

2. Dynamics
1. Mechanical dynamics: motion governed by deviation from 

equilibrium of forces

2. Thermodynamics of fluids:
• Deviation from global thermodynamic equilibrium often governs 

processes multiphase, multi-component systems

• Local thermodynamic equilibrium is (almost always) maintained

Properties and physical models of 

fluids

Only continuum models are appropriate!



Mathematical model of

simple fluids

• Inside the fluid:

– Transport equations

Mass, momentum and energy balances

5 PDE’s for

– Constitutive equations

Algebraic equations for

• Boundary conditions

On explicitly or implicitly specified surfaces

• Initial conditions

),(),(),,( rrur
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tTttp and

),T,p(k),T,p(),T,p( 

Primary (direct)

field variables

Secondary (indirect) field variables



Some models of simple fluids

•

•

In both of these, the heat transport problem can 
be solved separately (one-way coupling):

•
Mutually coupled thermo-hydraulic equations:

• Non-Newtonian behaviour etc.

const,const  

),,(),,(),,( TpkTpTp 

const),p( 

Stoksean fluid

compressible 

(or barotropic) fluid

models for complex fluids

general simple fluid

fluid dynamical 

equations

heat transport 

equation (1 PDE)

fluid dynamical 

equations

heat transport 

equation



Phase transitions
in case of a single compound

• Evaporation, incl.
– Boiling

– Cavitation

• Condensation, incl.
– Liquefaction

– Solidification

• Sublimation

• Freezing

• Melting

All phase transitions involve 
latent heat deposition or 
release



Typical phase diagrams of a pure material:

In equilibrium 1, 2 or 3 phases can exist together

Complete mechanical and thermal equilibrium
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Material properties

in multi-phase, single component 

systems

One needs explicit constitutional equations 

for each phase.

For each phase (p) one needs to know:

– the thermodynamic potential 

– the thermal equation of state

– the viscosity

– the heat capacity

– the thermal conductivity.
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Conditions of local phase equilibrium

in a contact point

in case of a pure material
• 2 phases:

T(1)=T(2)=:T

p(1)=p(2)=:p

μ(1)(T,p)= μ(2)(T,p)

Locus of solution:

a line Ts(p) or ps(T), 

the saturation

temperature or 

pressure (e.g. 

‘boiling point´).

• 3 phases:

T(1)=T(2) =T(3)=:T

p(1)=p(2)=p(3) =:p

μ(1)(T,p)= μ(2)(T,p) = μ(3)(T,p)

Locus of solution:

a point (Tt,pt), the triple 

point.



Multiple components

• Almost all systems have more than 1 (chemical) 
components

• Phases are typically multi-component mixtures

Concentration(s): measure(s) of composition
There are lot of practical concentrations in use, e.g.

– Mass fraction (we prefer this!)

– Volume fraction (used in CFD and if volume is conserved upon mixing!)

– Mole fraction (used in case of chemical reactions and diffusion)
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Multiple components

Concentration fields appear as new primary 

field variables in the mathematical model
One of them (usually that of the solvent) is 

redundant, not used.

Kktck ,,2for),( 

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Material properties in 

multi-component mixtures

• One needs constitutional equations for each 
phase

• These algebraic equations depend also on the 
concentrations

For each phase (p) one needs to know:
– the thermodynamic potential

– the thermal equation of state

– the heat capacity

– the viscosity

– the thermal conductivity

– the diffusion coefficients

      
      
      
      
      
      











 ,c,c,T,pD

,c,c,T,pk

,c,c,T,p

,c,c,T,pc

,c,c,T,p

,c,c,T,p

ppp

,k

ppp

ppp

ppp

p

ppp

ppp

21

21

21

21

21

21









• Suppose N phases and K components:

• Thermal and mechanical equilibrium on the interfaces:

T(1)=T(2) = …= T(N)=:T

p(1)=p(2) = …= p(N)=:p 2N → only 2 independent unknowns

• Mass balance for each component among all phases:

K(N-1) independent equations for 2+N(K-1) independent unknowns

Conditions of local phase equilibrium

in a contact point

in case of multiple components
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Phase equilibrium

in a multi-component mixture

Gibbs’ Rule of Phases, in equilibrium:

If there is no (global) TD equilibrium:

additional phases may also exist 

– in transient metastable state(s) or 

– in spatially separated, distant points

22components phases  K#N#

TD limit on the # of phases



Miscibility

The number of phases in a given system is also influenced 
by the miscibility of the components:

• Gases always mix →
Typically there is at most 1 contiguous gas phase

• Liquids maybe miscible or immiscible →
Liquids may separate into more than 1 phases

(e.g. polar water + apolar oil)

1. Surface tension (gas-liquid interface)

2. Interfacial tension (liquid-liquid interface)

(In general: Interfacial tension on fluid-liquid interfaces)

• Solids typically remain granular



Topology of phases and interfaces

A phase may be

• Contiguous
(more than 1 contiguous 

phases can coexist)

• Dispersed:

– solid particles, 
droplets or bubbles

– of small size

– usually surrounded 
by a contiguous 
phase

• Compound

Interfaces are

• 2D interface surfaces 
separating 2 phases

– gas-liquid: surface

– liquid-liquid: interface

– solid-fluid: wall

• 1D contact lines separating 3 

phases and 3 interfaces (at least)

• 0D contact points with 

(at least) 4 phases, 6 interfaces 

and 4 contact lines

Topological limit on the # of phases

(always local)



Special Features to Be Modelled

• Multiple components →

– chemical reactions

– molecular diffusion of constituents

• Multiple phases → inter-phase processes

– momentum transport,

– mass transport and

– energy (heat) transfer

across interfaces and within each phase.

(Local deviation from total TD equilibrium is typical)



Are components = chemical 

species?

Not always:

• Major reagents in 

chemical reactions has to 

be modelled separately,

• but similar materials can 

be grouped together and 

treated as a single 

component

– The grouping can be 

refined in the course of the 

modelling

Example:
components in an air-
water two phase system

wet air

dry air water vapour

N2 O2 CO2

water

H2O
dissolved 

gases

H2O N2 O2 CO2H+ OH-



MODELLING 

MULTI-COMPONENT FLUIDS

Governing equations

• Transport equations

• Chemical reaction modelling



We set up transport equations for single-phase multi-component fluids

Multi-component

advection and diffusion

model

Modelling

chemical reactions

Multi-phase

transport equations

conceptual and

mathematical

analogy

for

necessary

for

Multi-component transport



Multi-component transport
Outline

• Balance equations

– Mass balance — equation of 

continuity

– Component balance

• Advection

• Molecular diffusion

• Chemical reactions



Mass balance for a control volume
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Eulerian (fixed) control volume in 3D
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Outflow rate:

Mass production rate:
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Mass is a conserved quantity (in 3D):

no production (sources) and decay (sinks) inside
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Integral form:

Mass balance equation

Differential form:

By definition:

This is a

conservation law



Component mass balance
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Integral form:

Mass balance equations

Differential form:

By definition:

These are also

conservation laws

For each component:



The mass transport equations
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Two ways of

resolving redundancy

1. Pick exactly K mass transport equations and 

choose the K primary variables as follows:

2. If needed, calculate the remaining secondary 

variable fields from the algebraic relations:
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Differential forms in 

balance equations

Conservation of F:

• equations for the 

density (φ)

– general

– only convective flux

• equation for the 

specific value ( f )
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passive advection of F
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Passive advection

• The concentrations of 

the fluid particles do not 

change with time:

• The component 

densities vary in fixed 

proportion to the overall 

density:

• Computational advantage: 

The component transport 

equations uncouple from 

the basic fluid dynamical 

problem and can be solved 

separately and a posteriori

• The solution requires 

– Lagrangian particle orbits

– Initial conditions (hyperbolic 

equations)
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Simple diffusion models

• No diffusion → pure advection

• Equimolecular counter-diffusion

• Fick’s 1st Law

for each solute if 

but note that
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Further diffusion models

Thermodiffusion and/or barodiffusion:

occur(s) at

• high concentrations

• high T and/or p gradients

For a binary mixture:

coefficient of thermodiffusion

coefficient of barodiffusion
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 Analogous cross effects 

appear in the heat 

conduction equation



Further diffusion models

Nonlinear diffusion model

Cross effect among species’ 

diffusion

Valid also at

• high concentrations

• more than 2 components

• low T and/or p gradients

(For a binary mixture it falls 

back to Fick’s law.)
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Further notes on diffusion 

modelling

• For internal consistency of the whole model

– D has to be changed in accordance to the turbulence 

model (`turbulent diffusivity’)

– Diffusive heat transfer has to be included in the heat 

transport equation

• In the presence of multiple phases, the 

formulation can be straightforwardly generalised 

by introducing the phasic quantities
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The advection–diffusion equations
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The advection–diffusion–reaction 

equations
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ju

ju











advective 

flux

diffusive 

flux reactive source terms
local rate 

of change

The component masses are not conserved quantities



Reaction modelling

OUTLINE

1. Reaction stoichiometry

2. Reaction energetics

3. Reaction kinetics

Effects in the model equations:

• reactive source terms in the advection–

diffusion–reaction equations

• reaction heat source terms in the energy 

(=heat conduction) equation

Incomplete 

without class 

notes
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Chemical reactions

• Chemical reactions are stochastic 

processes in which a molecular 

configuration of atoms transitions into 

another configuration

Incomplete 

without class 

notes

!
A figure showing initial and final configurations 

and explaining the relevant energy changes

is missing from here 

Energetics

forward reaction: ΔE>0 energy released    → exothermic

reverse reaction: ΔE<0 energy consumed → endothermic



A binary reaction

Stoichiometry

forward reaction

reactant → products

H2O = H+ + OH−

product ← reactants

reverse reaction

Reagents 

and reaction 

products

k species

1 H2O

2 H+

3 OH−

1:  kk 



A template reaction

Stoichiometry

forward reaction

reactants → product

2 H2 + O2 = 2 H2O

products ← reactant

reverse reaction

Reagents 

and reaction 

products

k species

1 H2O

2 O2

3 H2



Reaction stoichiometry

Stoichiometric constants

• forward reaction:
+ 2·H2O − 1·O2 − 2·H2 = 0

ν1 = +2,  ν2 = −1,  ν3 = −2

• reverse reaction:
−2·H2O + 1·O2 + 2·H2 = 0

ν1 = −2,  ν2 = +1,  ν3 = +2

• for reactants: νk < 0, 

• ror reaction products: νk > 0

• for catalysts: νk = 0

Reagents 

and reaction 

products

k species

1 H2O

2 O2

3 H2

0
k

k
The number of 

molecules is not

conserved



Reaction stoichiometry

Stoichiometric constants

• forward reaction:
+ 2·H2O − 1·O2 − 2·H2 = 0

ν1 = +2,  ν2 = −1,  ν3 = −2

• reverse reaction:
−2·H2O + 1·O2 + 2·H2 = 0

ν1 = −2,  ν2 = +1,  ν3 = +2

• for reactants: νk < 0, 

• ror reaction products: νk > 0

• for catalysts: νk = 0

Reagents 

and reaction 

products

k species

1 H2O

2 O2

3 H2

0
k

kkM 

BUT: the total 

mass is

conserved



Reactive source terms

One reaction process:

reaction rate

Possible units: 

• mol/s, 

• (mol/m3)/s, 

• (mol/kg)/s

Several reactions:

reaction rate vector

  k
k

dt

dn
k :    

 
 
r

rrk
k

dt

dn
k  :

   
 

 

   
 

   
 












r

rrkk
k

r

rrkk
k

k

r

rrkk
k

M
dt

dc
k

M
dt

d
k

tQM
dt

dm
k














:

:

:
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An alternative formulation:

summation over reaction pairs instead of 

individual reactions

     
 

 

 

     
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


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



r

rkk
k

r
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rr

M
dt
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k

M
dt

d
k

tQM
dt

dm
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












:

:

:

forward and reverse 

reaction rates



Reactive heat source terms in 

the energy transport equation
Energy released (or consumed) in the 

course of the reactions appear in the 

system as reaction heat. 

The corresponding source terms in the 

energy balance (aka. heat transport) 

equation are:

or, equivalently      
 

 
  
r

r rr
E  

   
 
 
r

r r
E 

energy released 

in reaction [r]

energy released

in forward reaction [r]



Reaction kinetics

For a wide range of reactions the reaction 

rates look like this

     



















 



TR

E
c

r

i

ir
i act

exp




probability of the transition 

at the prevailing temperature
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stoichiometric coefficients 

of the reactants

probability of the 

simultaneous presence 

of all reactant molecules



MULTI-PHASE FLUID 

SYSTEMS



Multiphase systems

• Multiphase pipe flows

– Physical phenomena

– Modelling approaches

– Quantities pertinent to multiphase phenomena

– Special measurement techniques



Horizontal gas-liquid flow patterns

• Dispersed Bubble Flow

• Stratified Flow

• Stratified–Wavy Flow

• Plug Flow

• Slug Flow

• Annular–Dispersed Flow 
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https://en.wikipedia.org/wiki/Brooke_Benjamin
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Vertical gas-liquid flow patterns

• Bubble Flow

• Plug or Slug Flow

• Churn Flow

• Annular Flow

• Wispy Annular Flow Taylor bubble

See videos at www.thermopedia.com/videos

https://en.wikipedia.org/wiki/G._I._Taylor
http://www.thermodedia.com/videos/
http://www.thermodedia.com/videos/
http://www.thermopedia.com/videos/


The effect of pipe inclination

Θ = +10°



The effect of pipe inclination

Θ = +2°



The effect of pipe inclination

Θ = +0.25°



The effect of pipe inclination

Θ = 0°



The effect of pipe inclination

Θ = −1°



The effect of pipe inclination

Θ = − 5°



The effect of pipe inclination

Θ = − 10°



• Relative flow directions

– Co-current flow (as shown above)

– Counter-current flows (one of the mass flow 

rates is negative): some of the flow patterns 

exist with opposite flow directions too

• Somewhat analogous flow patterns can be 

identified in liquid-liquid, liquid-solid and 

gas-solid systems



• Even more complex flow patterns in three 

phase pipe flows

• Flow classification is

– somewhat arbitrary and subjective in pipes

– hardly possible in 3D containers

• Further points to observe:

– Heat transfer phenomena

– Phase transition phenomena



Pipe flow modelling alternatives

• Flow patterns

• Flow regimes

• Flow pattern maps

• Tasks:

– Model flow region 

boundaries

– Model flow behaviour 

within each flow region

Task:

Create a single fluid 

model that can 

correctly reflect fluid 

behaviour in all flow 

regimes and thus 

automatically 

describes flow pattern 

transitions



Parameters of one-phase pipe flow 

Control (input) 
parameters:

• Pipe geometry
– shape

– size

– inclination

– wall roughness

• Mass flow rate

• Fluid properties

• External heat source

Measured (output) 
parameters:

• Pressure drop 

• Transported heat
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Parameters of two-phase pipe flow 

Control (input) 
parameters:

• Pipe geometry
– shape

– size

– inclination

– wall roughness

• Mass flow rates

• Fluid properties

• External heat source

Measured (output) 
parameters:

• Pressure drop 

• Volume (void) fraction

• Interfacial area 
density

• Transported heat



Model variables

in pipe systems

• Cross sectional integral quantities

– linear densities

– flow rates

• Cross sectional average (‘mean`) 

quantities

– ‘mean` densities

– ‘mean` fluxes

Purpose: reduction of independent variables: (t,x,y,z)  (t,x)



Interfacial (surface) tension

A gas spontaneously expands.

It is under pressure.

An interface spontaneously shrinks.

It is under tension.

Incomplete 

without class 
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Interfacial area density



Interfacial area density

• Its importance in chemical engineering: 

high interfacial energy density increases 

rate of 

– absorption/desorption, 

– diffusion limited surface reactions, 

– catalytic reactions



Volume fraction

• Definition: 

𝛼 𝑝 =
𝑉 𝑝

𝑉𝑠𝑎𝑚𝑝𝑙𝑒

Incomplete 
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Volume fractions 

in gas—liquid two-phase systems 

• If the volume fraction of the gas phase is 

used, it is often called void fraction:

• If the volume fraction of the liquid phase is 

used, it is often called liquid holdup:

      1,g 

      1, g
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Measurement of volume fraction

Type/definition

• Local (time averaged)

𝛼 𝑝 𝑥, 𝑦, 𝑧 = 𝛼 𝑝 𝑡, 𝑥, 𝑦, 𝑧

• Chordal averaged

• Cross sectional 

averaged

𝛼 𝑝 𝑡, 𝑥 = 𝛼 𝑝 𝑡, 𝑥, 𝑦, 𝑧

• Volume averaged

𝛼 𝑝 (𝑡; 𝑉)

Measurement method

• Direct volume/mass 

measurement

• Optical probe

• Conductivity probe

• Absorption of

– light

– X-ray

– γ-ray

• neutron scattering

Incomplete 

without class 
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Superficial and phasic velocities

• Superficial velocity:

𝑢 𝑝 𝑡, 𝑥 =
ሶ𝑀 𝑝 𝑡, 𝑥

𝜚 𝑝 𝑡, 𝑥 ⋅ 𝐴 𝑡, 𝑥
• Phasic (mean physical) velocity:

𝑢 𝑝 𝑝
𝑡, 𝑥 =

ሶ𝑀 𝑝 𝑡, 𝑥

𝜚 𝑝 𝑡, 𝑥 ⋅ 𝐴 𝑝 𝑡, 𝑥
• Relationship:

𝑢 𝑝 𝑡, 𝑥 = 𝛼 𝑝 𝑡, 𝑥 ⋅ 𝑢 𝑝 𝑝
𝑡, 𝑥

Incomplete 
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Balance equations of multiphase 

pipe flows

• General framework:

– Mass transport equations

– Longitudonal momentum transport

– Energy transport

Incomplete 

without class 

notes
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POST-IT NOTES



Usage of thermodynamic 

relations
Expressing local thermodynamic equilibrium in 

fluid dynamics:
the use of intensive and extensive state 
variables

• Integral forms: intensive and extensive (X)

• Differential forms (PDE’s):
– fixed control volume (V=const):

intensive and densities of the extensive ones (x=X/V)

– advected fluid parcel (m=const):
intensive and specific values of the extensive ones 
(x=X/m)

Incomplete 

without class 

notes
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Note 90



Notational system for local 

extensive quantities

• For integral description

(in control volumes):

– extensive quantity: F

• For differential description (local values):

– density: φ=F/V=ρ∙f

– specific value f=F/m

– molar value f=F/n

– molecular value F*=F/N

Note 91



Notations to be used

(or at least attempted)

• Material derivative of a specific quantity:

   fffDf
t

f

Dt

Df
tt 







uu ::

Note 92



Note

Thermodynamical representations

• All of these are equivalent:
can be transformed to each other by appropriate formulæ

• Use the one which is most practicable:
e.g., (s,p) in acoustics: s = const  ρ(s,p)  ρ(p).

We prefer (T,p)

Representation (independent variables) TD potential

entropy and volume (s,1/ρ) internal energy

temperature and volume (T,1/ρ) free energy

entropy and pressure (s,p) enthalpy

temperature and pressure (T,p) free enthalpy

93



• Phase index (upper): 

– (p) or

– (s), (ℓ), (g), (v), (f) for solid, liquid, gas , vapour, fluid

• Component index (lower): k

• Coordinate index (lower): i, j or t

Examples:

• Partial differentiation:

Notations to be used

(or at least attempted)

),,(, 321 zyxit 

Note
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p
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• A point x is on a moving interface at t (given 

either implicitly or parametrically).

• The designated normal vector at x is n.

Then the jump (discontinuity) of a function f is:

Note

Jump of a function

      xnxnx ,tf,tf,tf 
0



Note 95


