Open Source CFD course Mid-term examination Date: $1^{\text {st }}$ April 2015

Name:
NEPTUN: \qquad
\qquad

1. Perform a transient 2D incompressible simulation of a laminar room temperature air flow inside a T-junction with one inlet and two outlets using Newtonian fluid model! Geometry is shown in Figure 1, but the T-junction is from the USA, so dimensions are in inches (1 inch $=2.54 \mathrm{~cm}$). Construct a mesh of 4 blocks in blockMesh. The number of cells (as shown in Figure 1) should be $20 x 20,20 \times 20,30 \times 20$ and 20×30. The 20×20 blocks should have uniform cell size, while the 30×20 and the $20 x 30$ blocks should have a "smooth grading": cell expansion ratio should be exactly 1 where different blocks connect. Inlet velocity $\mathrm{U}_{\text {in }}$ should be set to $0.1 \mathrm{~m} / \mathrm{s}$ and the two outlets should be set to the same static pressure. Assign different patch names to the two outlet boundaries!

Note: The total length can be calculated as $L_{\text {total }}=l_{1}\left(q^{n}-1\right) /(q-1)$, where l_{1} is the length of the first interval, q is the cell expansion ratio and n is the number of the intervals for the given total length. This equation can be solved iteratively for q. Important to see, that the last-first ratio for simplegrading is calculated as $\mathrm{r}_{\mathrm{lf}}=\mathrm{l}_{\mathrm{n}} / l_{1}=\mathrm{q}^{\mathrm{n}-1}$. Viscosity of room temperature air is $1.5 \mathrm{e}-5 \mathrm{~m}^{2} / \mathrm{s}$.

Figure 1 . The geometry of the domain
Visualize results in Paraview and gnuplot and save images in PNG file format:
a.) Paraview image showing the mesh
with correct sizes and cell numbers
with correct gradings
b.) Paraview image showing the velocity magnitude distribution for converged solution
c.) Paraview image showing the Courant number distribution for converged solution
_/ 5 p a.) Pa/5 p
d.) Paraview image showing all the separations in the flow using streamlines for converged solution __/5 p
e.) gnuplot image showing the time-evolution (convergence) of the average flow speed of 2 outlets
\qquad
2. Which linux command can be used for counting the number of lines in a text file?
\qquad
3. What is the symbolic form of the following equation?

```
solve
(
        fvm::ddt(c)
        - ((D*a) & fvc::grad(c))
    - fvm::laplacian(D, c)
);
```

\qquad / 5 p
4. In OpenFOAM, what dimension vector corresponds to Watt (J / s)?
5.
5. Which OpenFOAM utility can be used to determine non-orthogonality and skewness?
6. List the different viscosity models implemented in OpenFoam for incompressible cases!
\qquad
7. Calculate the number of cells and the simpleGrading value for blockMeshDict in a 1 m sized block with (approximately) 1 mm first cell size and 1.05 cell expansion ratio!

Number of cells: simpleGrading:
__/ 10 p
8. How can you estimate the maximum Courant number before starting a simulation?
9. What does valueFraction= 0 and valueFraction=1 mean in a mixed boundary condition?
\qquad
10. How can you obtain the symmetric and antisymmetric part of a tensor \mathbf{T} in OpenFOAM code?
\qquad / 5 p
Total: \qquad / 100 p
\qquad

