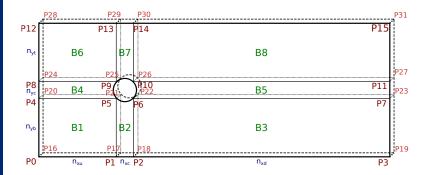


Laboratory tasks I.

Unsteadyness

- Create the geometry and mesh for the vortex street simulation
 - Make a copy the cavity case with a new name (e.g. vonKarman)
 - Modify the mesh (blockMeshDict) according to the geometry (figures on the two next slides)
 - L = 40m, W = 20m, l = 10m, d = 2m
 - Interval numbers in x: $n_{xu} = 48$, $n_{xc} = 30$, $n_{xd} = 71$
 - Interval numbers in y: $n_{yb} = 48$, $n_{yc} = 30$, $n_{yt} = 48$
 - Interval grading in x: $g_{xu} = 0.1075$, $g_{xc} = 1$, $g_{xd} = 28$
 - Interval grading in y: $g_{yb} = 0.1075$, $g_{yc} = 1$, $g_{yt} = 9.3$
 - Create, check and visualize the mesh



э

Laboratory tasks I. - Mesh blocks

Unsteadyness

Laboratory tasks II.

Unsteadyness

- 2 Modify BC-s (0/U and 0/p) according to the geometry $(U = U_x = 1ms^{-1})$
- 3 Modify the viscosity (in transportProperties), according to Re = 400
- ♦ Modify system/contolDict (according to the CFL, $U_{max} = 2ms^{-1}$, $\Delta x_{min} = 0.045m$)
- Modify system/fvSolution (solver smoothSolver to PBiCG, remove line: smoother symGaussSeidel, add line: preconditioner DILU,)
- **6** Run the simulation (using icoFoam, redirecting to a log, $t_{end} = 100s$)
- Calculates vorticity and Courant number (commands: vorticity, Co)
- Visualize the results (vorticity, Courant number, pressure, streamlines)

Assignments

Unsteadyness

- What is the total volume of domain in the von Karman vortex street case?
- Where should be positioned a line source of the streamlines for the best visual experience?
- Why could not simpleFoam results a convergent solution for this problem?
- How could you increase the Reynolds number? List 3 possibilities!
- **5** Which way could you improve the mesh? List 3 of them!

Homework

Unsteadyness

Balogh Miklós

- **1** Create a refined O-grid (12 blocks) for the von Karman vortex street case, with
 - L = 70, l = 20, d = 1
 - Smaller cell expansion in the wake.
 - Fine surface mesh for the cylinder

Ocompare the results to the basic case