

Open Source Computational Fluid Dynamics

An MSc course to gain extended knowledge in Computational Fluid Dynamics (CFD) using open source software.

Zoltán Hernádi

Department of Fluid Mechanics

Budapest University of Technology and Economics

Multiphase flows

We can discuss VOF (Volume of fluid method) only.

- only one momentum equation is solved for mixture
- indicator function: e.g. alpha1 = 1 for liquid, alpha1 = 0 for gas

$$\sum_{i} \alpha_{i} = 1$$

• advection equation for indicator function:

$$\frac{\partial \alpha_i}{\partial t} + \nabla \cdot (U \cdot \alpha_i) = 0$$

• transport properties: weighted averages based on characteristic functions

$$\rho \!=\! \sum_{i} \! \alpha_i \rho_i$$

Breaking of a dam

system/setFieldsDict:

```
defaultFieldValues
```

```
volScalarFieldValue alpha1 0
);
regions
    boxToCell
        box (0 0 -1) (0.1461 0.292 1);
        fieldValues
            volScalarFieldValue alphal 1
        );
);
```


Breaking of a dam

Breaking of a dam

6

Reactive flows

Conservation equation for chemical specie *i*:

$$\frac{\partial \rho y_i}{\partial t} + \nabla \cdot (\rho y_i U) + \nabla j_i = R_i$$

- y _i : mass fraction of specie
- j : mass diffusion-flux of specie (relative to U)
- \dot{R}_{i} : source/sink due to chemical reactions

Four basic chemical reactions types: synthesis, decomposition, single replacement and double replacement.

Chemical kinetics

A system of ODEs are solved for every reactions in every cells:

$$\frac{-d[C]}{dt} = k \cdot [C]^n$$

Arrhenius reaction rate:

$$k = A \cdot \exp\left(\frac{-E_a}{RT}\right)$$

Multicomponent transport

Н2О

specie		
{		
	nMoles	1;
	molWeight	18.0153;
}		
the	ermodynamics	
{		
	Tlow	200;
	Thigh	5000;
	Tcommon	1000;
	highCpCoeffs	(2.67215 0.00305629 -8.73026e-07 1.201e-10 -6.39162e-15 -29899.2 6.86282);
	lowCpCoeffs	(3.38684 0.00347498 -6.3547e-06 6.96858e-09 -2.50659e-12 -30208.1 2.59023);
}		
transport		
{		
	As	1.67212e-06;
	Ts	170.672;
}		

Sutherland (dynamic) viscosity [Pa-s]:

$$\mu = \frac{A_s \sqrt{T}}{1 + T_s / T}$$

Multicomponent transport

NASA polynomials for heat capacity and enthalpy:

$$\begin{array}{l} \frac{Cp}{R} = a_0 + a_1 T + a_2 T^2 + a_3 T^3 + a_4 T^4 \\ \frac{H}{RT} = a_0 + \frac{a_1 T}{2} + \frac{a_2 T^2}{3} + \frac{a_3 T^3}{4} + \frac{a_4 T^4}{5} + \frac{a_5}{T} \end{array}$$

Note: R is the universal gas constant here!

