

Open Source Computational Fluid Dynamics

An MSc course to gain extended knowledge in Computational Fluid Dynamics (CFD) using open source software.

Teachers: Miklós Balogh and Zoltán Hernádi

Department of Fluid Mechanics, Budapest University of Technology and Economics

Course description

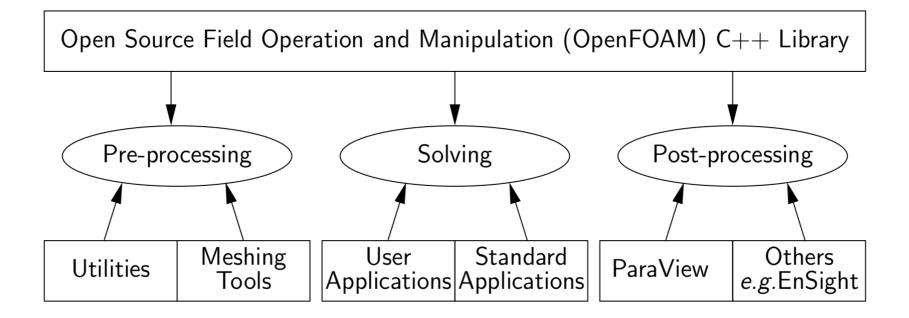
- Introduction to OpenFOAM simulations (and linux, gnuplot, paraview).
- Installation on several Linux distributions and virtual systems.
- Solution of simple fluid dynamics problems using OpenFOAM.
- Detailed introduction to OpenFOAM software components:
 - pre-processing (meshing tools and utilities)
 - solving (standard applications, user applications)
 - post-processing (ParaView).
- Single phase stationary and transient flows, turbulence, compressible flows.
- Multiphase and reactive flows.
- Extension of OpenFOAM capabilities by program code development in C++.
- Individual projects using OpenFOAM.
- Further open source CFD tools.

Course website

http://www.ara.bme.hu/~hernadi/OpenFOAM

Planned schedule

- week 1: introduction to OpenFOAM, installing
- week 2: solving simple fluid flow problems
- week 3: studying software components
- week 4: stationary and transient flows
- week 5: turbulent and compressible flows, student project proposals deadline
- week 6: multiphase and reactive flows, final list of individual project proposals
- week 7: OpenFOAM programming (C++), individual project declarations
- week 8: mid-term exam
- week 9: advanced programming tools
- week 10: other open-soruce tools
- week 11: (holiday)
- week 12: experiments and simulations
- week 13-14: presentations of individual projects


Final grade

The grading is based on 1 mid-term exam (50% in final grade) and an individual project (50% in final grade). In-class activity will be rewarded by bonus points.

Introduction to OpenFOAM

- Open source Field Operation And Manipulation
- C++ toolbox, mainly designed for Computational Fluid Dynamics
- *Linux* is fully supported by OpenFOAM.

Linux operating system

- Linux comes in different flavours: distributions.
- Most popular Linux distributions are e.g. Arch Linux, CentOS, Debian, Fedora, Mageia, Linux Mint, openSUSE, PCLinuxOS, Slackware, Ubuntu.
- Different distributions have different desktop environments, but the linux **command-line** in very similar.
- The *command-line* can be accessed through a **terminal emulator**, e.g. gnome-terminal, LXTerminal, rxvt, xterm.

Commands for navigating in file system

ls	list directory contents
ls -l	(use a long listing format)
ls -ltr	(long listing, sort by time, reverse order)
lshelp	(to see other options)
man Is	manual of Is command (to exit press q)
cd	change directory to parent (relative to \$PWD)
cd /bin	change directory to /bin (absolute position)
cd ~/OpenFOAM	change directory to \$HOME/OpenFOAM
pwd	print name of current/working directory
echo HOME	display a line of text: HOME
echo \$HOME	display a variable: \$HOME
cd	change directory to \$HOME
find -name OpenFOAM	find files or directories named OpenFOAM
man find	manual of find command (to exit press q)
which Is	locate a command

Commands for texts in files

cd \$WM_PROJECT_DIR	change directory to OpenFOAM installation
cat Allwmake	print file content
less Allwmake	print file content and scroll (exit: q)
	(type /source to search "source")
	(type n for next, N for previous)
wc Allwmake	print newline, word, and byte counts
wc -w Allwmake	print word counts
man wc	manual for wc command
head Allwmake	output first part of file
tail Allwmake	output last part of file
grep echo Allwmake	print lines matching a pattern
sort Allwmake	sort lines of text
sort -r Allwmake	sort lines of text, reverse order
tac Allwmake	print file content, reverse order
grep -ri piso src	find files with content (-i: ignore case)
sort Allwmake uniq	omit reported lines in sorted output
man sed; man awk	manuals of more advanced text processing

Commands for manipulating files

cp Allwmake ~/test1	copy file
mv ~/test1 ~/test2	rename file
mv ~/test2 ~/OpenFOAM/	move file
rm ~/OpenFOAM/test2	remove file
mkdir ~/test	make directory
rmdir ~/test	remove empty directory
man rm	manual for rm command (see -r option!)
sort Allwmake >~/test	create file by redirecting
sort Allwmake >~/test	overwrite file by redirecting
sort <~/test >>~/sorted	sort redirected input and save output
sort <~/test >>~/sorted	sort redirected input and add output
chmod 000 ~/test	change file mode (check with ls -1)
chmod u+rw ~/test	change file mode (check with ls -1)

Note

Read (4), write (2), execute (1). E.g. rwxr-xr-x = 755, rw-r--r-= 644.

Job control and performance monitoring

ps	list current processes
ps aux less	list all processes
top	interactive display of processes
kill	kill/terminate process
free -h	report free memory
df -h	report disk space usage
du -sh	estimate file space usage

Tip

Use TAB button for auto-completion of commands!

Visit http://linuxcommand.org for learning more commands.

Note

Recommended text editor GUI: gedit

Installing OpenFOAM

- Linux is fully supported by OpenFOAM.
- On non-Linux systems, you can use a virtualization platform, e.g. VirtualBox. You can download a VirtualBox image file from the course website:

http://www.ara.bme.hu/~hernadi/OpenFOAM/virtualbox.html

• If you have Linux installed, you can install OpenFOAM from

http://www.openfoam.org/download/

- Easy installation is possible on Ubuntu. For other systems, you have to download and compile OpenFOAM source code.
- If you use Git version control system, you can compile OpenFOAM source code with the latest fixes.
- If you experience problems, you can check the (unofficial) wiki:

http://openfoamwiki.net/index.php/Installation/Linux/OpenFOAM-2.3.1

Warning

Compiling OpenFOAM from source usually take several hours! **Be patient!**

Testing OpenFOAM installation

If OpenFOAM is installed, several Linux environment variables are available, e.g.

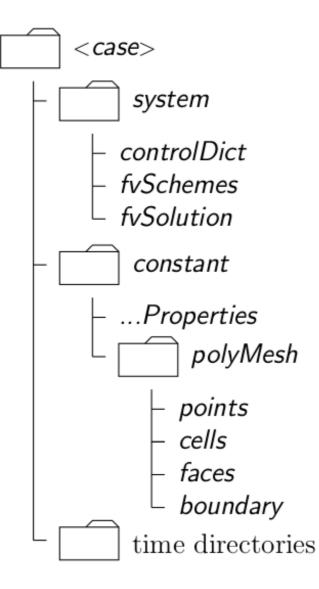
\$WM_PROJECT_DIR	OpenFOAM installation directory
\$FOAM_RUN	OpenFOAM user directory
\$FOAM_TUTORIALS	OpenFOAM tutorials directory

Note

You can list other environment variables by

```
echo $FOAM_<TAB><TAB>
```

env | grep 'WM\|FOAM' | less


The usual way of testing OpenFOAM is to run a simple simulation:

```
mkdir -p $FOAM_RUN
cp -r $FOAM_TUTORIALS $FOAM_RUN
cd $FOAM_RUN/tutorials/incompressible/icoFoam/cavity
blockMesh
icoFoam
paraFoam
```


OpenFOAM cases

The basic directory structure:

How OpenFOAM solvers work

Partial differential equation

$$\frac{\partial \rho \mathbf{U}}{\partial t} + \nabla \cdot \phi \mathbf{U} - \nabla \cdot \mu \nabla \mathbf{U} = -\nabla p$$

is represented using high-level C++ syntax inside the solver:

solve

- fvm::ddt(rho,U)
- + fvm::div(phi,U)
- fvm::laplacian(mu,U)
 - ==

```
- fvc::grad(p)
```

);

Numerical treatment settings (discretization schemes and linear-solvers) are inside OpenFOAM cases (*fvSchemes*, *fvSolution*).

```
divSchemes
{
    default none;
    div(phi,U) bounded Gauss linearUpwind grad(U);
}
```