Building Aerodynamics

Sand Erosion Method – Group 6 Effects of building height variability and building gaps

Antoine PATÉ Simon IKONOMAKIS Thomas BÉLARDY Florian SOILLY

Table of contents

Introduction I. Context II. Experiments III. Computation of the results IV. Interpretation Conclusion

I. Context

II. Experiments

III. Computation of the results

IV. Interpretation

- Aim of the project : Studying wind conditions and pedestrian wind comfort in a urban square
- Target square : József Nádor Square in downtown Budapest
- Sand Erosion Method
- Used Softwares : Ara Sand Erosion and Tecplot

I. Context

II. Experiments

III. Computation of the results

IV. Interpretation

I. Context

Sand Erosion Method :

- Gives an effective image of the zones where local wind speed will be higher
- Creation of a model placed in a wind tunnel, recovered with sand grains
- Observation of the places where the sand is blown away
- The erosion patterns give an impression of the zones where the wind speed will be higher, thus the wind comfort with be lower

I. Context

I. Context

II. Experiments

III. Computation of the results

IV. Interpretation

5 steps:

- 1. Models creation
- 2. Fractioning of the sand
- 3. Preparation of the wind tunnel
- 4. Wind speed calibration
- 5. Experiments

Fractioning of the sand:

• Preparation of the wind tunnel:

Model fixation

Camera setup

Wind speed calibration:

- Model used: Flat plate
- Target: Critical wind speed
 - Threshold value of wind speed for which the sand is blown away
- Critical speed value : 7,91 m/s
- Used for following computations

- 8 configurations 4 models with 2 wind directions
- 3 main steps:
 - Picture at o m/s
 - From 3 to 8 m/s by 0,5 increments
 - From 8 to 10 m/s by 1 increment

I. Context

II. Experiments

III. Computation of the results

IV. Interpretation

III. Computation of results

• Pictures treated with ARA Sand Erosion

III. Computation of results

• Tecplot analysis :

III. Computation of results

I. Context

II. Experiments

III. Computation of the results

IV. Interpretation

IV. Interpretation

Forward wind o^o Important flow separation

5 December 2018 Wind Flow direction

IV. Interpretation

Inclined wind 30° Smaller flow separation

5 December 2018

Wind Flow direction

IV. Interpretation – Comparison

Monobloc compared with empty space o^o

- Flow acceleration
- Flow deceleration

IV. Interpretation – Comparison

Monobloc compared with empty space 30°

- Flow acceleration
- Flow deceleration

I. Context

II. Experiments

III. Computation of the results

IV. Interpretation

Conclusion

V. Conclusion

- Qualitative and quantitative ideas of the wind stream on floor level
- Observation of the main flow separations
 - Easier to recognize them in the o° situation than on the 30°

• Limits:

- We didn't use the same 1 bit BW filter's value for every photo
- Some imprecision with the sand repartition and thickness
- Sand diameter not perfectly constant

Ouestions?