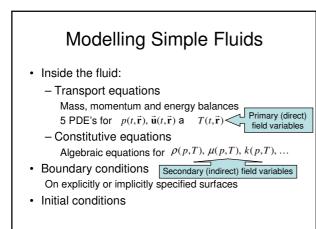

Multiphase and Reactive Flow Modelling

BMEGEÁTMW07

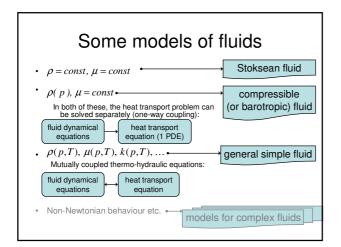
K. G. Szabó Dept. of Hydraulic and Water Management Engineering, Faculty of Civil Engineering Spring semester, 2012

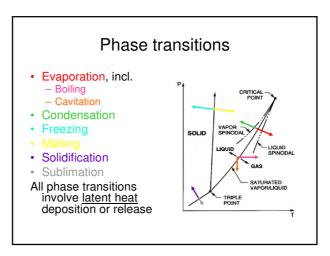


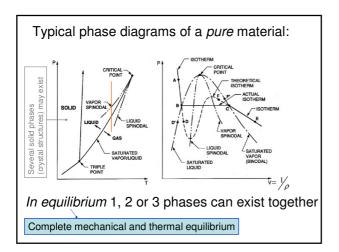
Models and properties of fluids

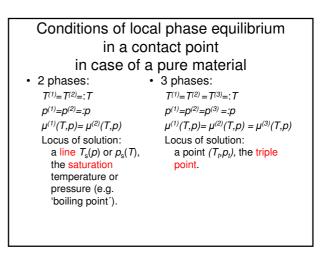
Key properties of fluids: • Large, irreversible deformations

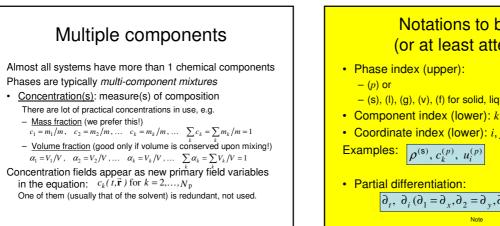
- Density, pressure, viscosity, thermal conductivity, etc. (are these properties or states?)
- Features to be modelled:
- Statics
 - Hydrostatics: definition of fluid (inhomogeneous [pressure and density])
 - density])
 Thermostatics: thermal equilibrium (homogenous state)
- 2. Dynamics
 - Mechanical dynamics: motion governed by deviation from equilibrium of forces
 - 2. Thermodynamics of fluids:
 - Deviation from global thermodynamic equilibrium often governs processes multiphase, multi-component systems Local thermodynamic equilibrium is (almost always) maintained
 - Only continuum models are appropriate!


Thermodynamical representations


Representation (independent variables)	TD potential
enthropy and volume $(s, 1/\rho)$	internal energy
temperature and volume $(T, 1/\rho)$	free energy
enthropy and pressure (<i>s,p</i>)	enthalpy
temperature and pressure (T,p)	free enthalpy

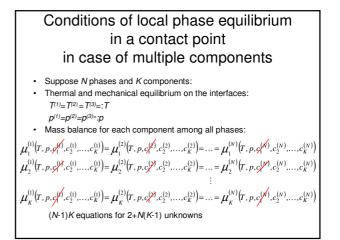

Note


- All of these are equivalent:
- can be transformed to each other by appropriate formulæ • Use the one which is most practicable: e.g., (s,p) in acoustics: $s = const \Rightarrow \rho(s,p) \Rightarrow \rho(p)$.


We prefer (*T*,*p*)

Notations to be used (or at least attempted)

- Phase index (upper):


 - (s), (l), (g), (v), (f) for solid, liquid, gas, fluid, vapour
- Coordinate index (lower): *i*, *j* or *t*
- Examples: $\rho^{(s)}, c_k^{(p)}, u_i^{(p)}$
- Partial differentiation: $\partial_t, \ \partial_i (\partial_1 = \partial_x, \partial_2 = \partial_y, \partial_3 = \partial_z)$

Material properties in multicomponent mixtures

- One needs constitutional equations for each phase
- These algebraic equations depend also on the concentrations

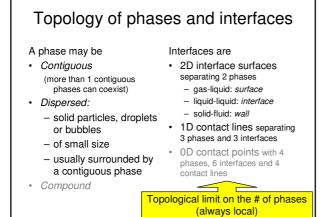
For each phase (p) one needs to know:

- the equation of state $\rho^{(p)}(p,T,c_1^{(p)},c_2^{(p)},...)$
- the viscosity
- $\mu_k^{(p)}(p,T,c_1^{(p)},c_2^{(p)},...)$
- the thermal conductivity $k^{(p)}(p,T,c_1^{(p)},c_2^{(p)},...)$ - the diffusion coefficients $D_{k\ell}^{(p)}(p,T,c_1^{(p)},c_2^{(p)},...)$

Phase equilibrium in a multi-component mixture

Gibbs' Rule of Phases, in equilibrium:

#phases $\equiv N \leq \#$ components $+2 \equiv K+2$


TD limit on the # of phases

If there is *no (global) TD equilibrium*: additional phases may also exist - in transient metastable state or - spatially separated, in distant points

Miscibility

The number of phases in a given system is also influenced by the miscibility of the components:

- Gases always mix → Typically there is at most 1 contiguous gas phase
- Liquids maybe miscible or immiscible \rightarrow Liquids may separate into more than 1 phases
- (e.g. polar water + apolar oil)
- 1. Surface tension (gas-liquid interface)
- 2. <u>Interfacial tension</u> (liquid-liquid interface)
- (In general: Interfacial tension on fluid-liquid interfaces)
- Solids typically remain granular

Special Features to Be Modelled

- Multiple components \rightarrow
 - chemical reactions
 - molecular diffusion of constituents
- Multiple phases \rightarrow inter-phase processes
 - momentum transport,
 - mass transport and
 - energy (heat) transfer
 - across interfaces.

(Local deviation from total TD equilibrium is typical)