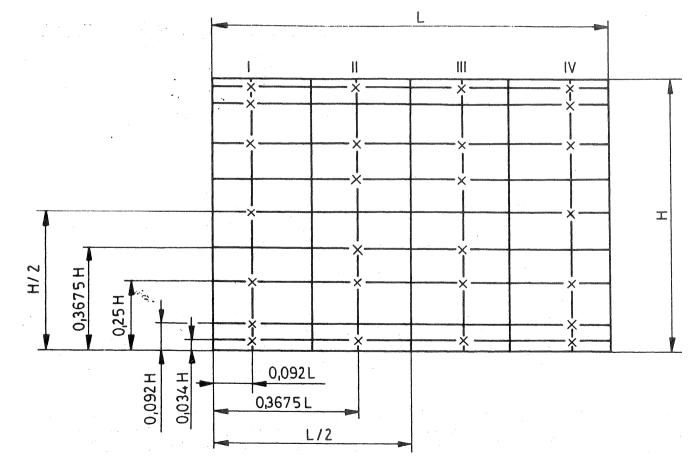
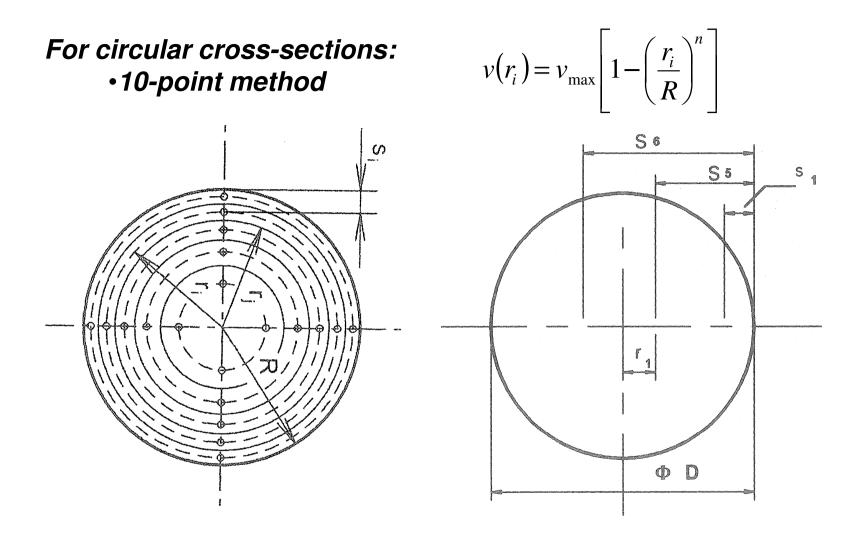

6. TRADITIONAL MEASUREMENT OF VOLUME FLOW RATE

- 6.1. Volume flow rate deduced from velocity measurement data
- 6.1.1. Application example
- 6.1.2. Principle and layouts

$$q_{V} = \int_{A'} \underline{v} \, \underline{dA'} = \int_{A} \underline{v} \, \underline{dA} = \int_{A} v_{\perp} \, dA$$
$$\approx \sum_{i=1}^{n} v_{\perp i} \underline{\Delta}A_{i} = \underline{\Delta}A_{i} \sum_{i=1}^{n} v_{\perp i}$$


$$= n \cdot \varDelta A_i \left(\frac{1}{n} \sum_{i=1}^n v_{\perp i} \right) = A \overline{v}_{\perp}$$

Dr. János VAD: Flow measurements


DISCRETISATION: For rectangular cross-sections: •k x k

•Log-lin method ISO 3966-1977

Dr. János VAD: Flow measurements

$\bar{v}_{\perp} = \frac{\sum_{i=1}^{n}}{\sum_{i=1}^{n}}$	$\sum_{i=1}^{n} k_i v_{\perp i}$	<i>— weighting</i>					
, l	-1	l	II	III	IV		
	l/L h/H	0,092	0,367 5	0,632 5	0,908		
	0,034	2	3	3	2		
	0,092	2			2		
	0,250	5	3	3	5		
	0,367 5	-sturie	6	6			
	0,500	6	·		6		
	0,632 5		6	. 6			
	0,750	5	3	3	5		
	0,908	2			2		
	0,966	2	3	3	2		

 $s_i/D = 0.026; 0.082; 0.146; 0.226; 0.342; 0.658; 0.774; 0.854; 0.918; 0.974$

Accurate integration: for 2nd order paraboloid profile only!

•Log-lin method ISO 3966-1977

3 partial areas

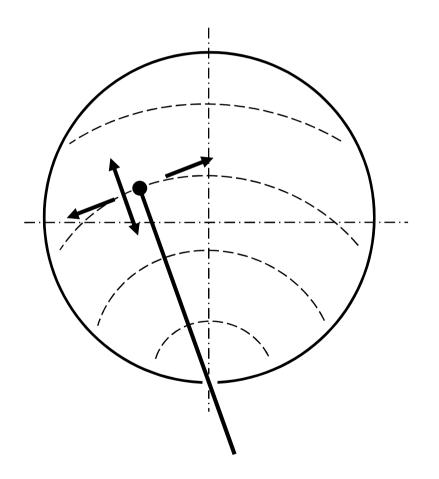
 $v_i(y) = A_i \lg y + B_i y + C_i$

 $s_i/D = 0.032; 0.135; 0.321; 0,679; 0.865; 0.968$

Newest standards incorporating Pitot static probes, and velocity measurements for determination of flow rate: e.g. ISO 5801:2007 (E) "Industrial fans – Performance testing using standardized airways."

General notes

•The nose of the probe is to be adjusted parallel to the wall of the duct - problems with non-normal velocity component

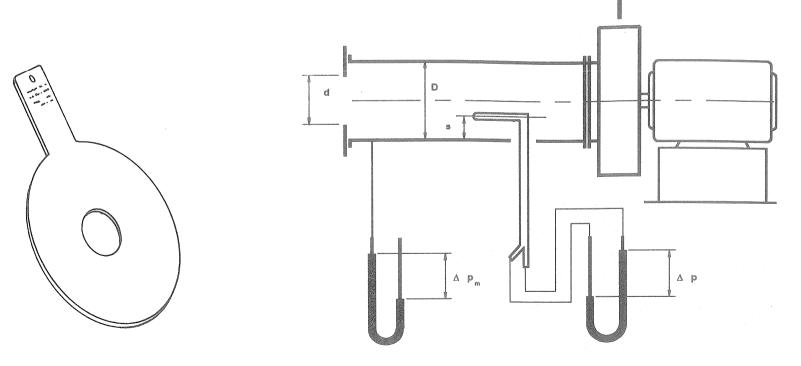

•*P*_dyn_ref Check of steadiness – with another PS probe

$$v_{ref0} = \sqrt{\frac{2}{\rho}} p_{dyn_ref_0} \qquad v_{ref_i} = \sqrt{\frac{2}{\rho}} p_{dyn_ref_i}$$
$$v_i = \sqrt{\frac{2}{\rho}} p_{dyn_i}$$
$$V_{ref0} \qquad V_{ref0}$$

Correction:
$$v_{i \, corr} = v_i \frac{v_{ref \, 0}}{v_{ref \, i}} = v_i \sqrt{\frac{P_{dyn_ref_0}}{p_{dyn_ref_i}}}$$

•Obtainment of density

- •Advantages and disadvantages
- •Quick scanning:



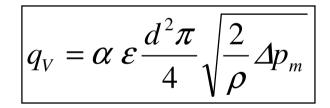
Dr. János VAD: Flow measurements

6.2. Volume flow rate measurements using contraction elements

- 6.2.1. Application example
- 6.2.2. Principle and layouts

Inlet orifice plate (inlet orifice meter)

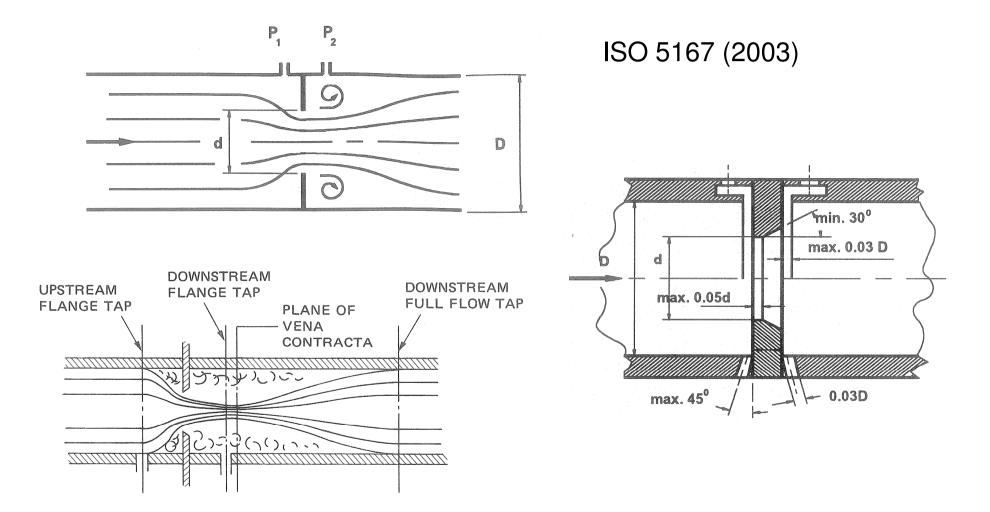
Assumption of ideal fluid: inviscid, incompressible flow

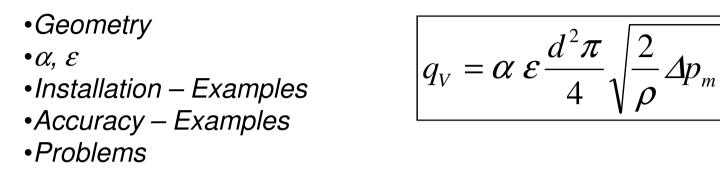

$$p_0 = p + \rho \frac{v^2}{2} \qquad v = \sqrt{\frac{2}{\rho}(p_0 - p)} = \sqrt{\frac{2}{\rho}\Delta p_m}$$
$$q_v = \frac{d^2\pi}{4}v = \frac{d^2\pi}{4}\sqrt{\frac{2}{\rho}\Delta p_m}$$

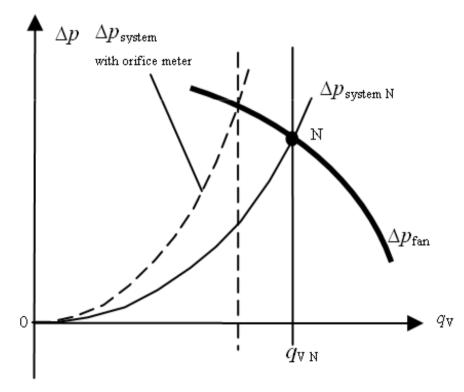
Reality: viscous, compressible flow

<u>A/ Effect of viscosity</u> flow coefficient α

now coefficient α

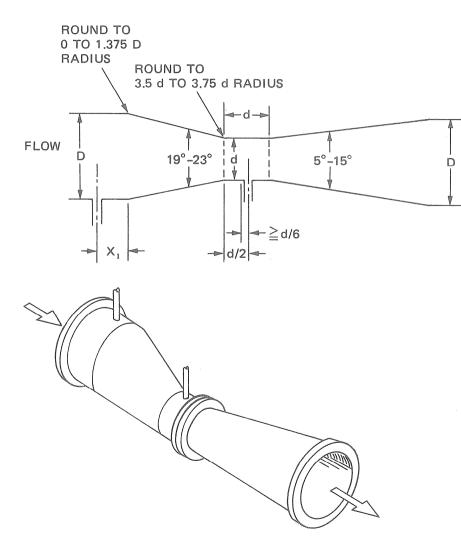

dependence on d/d_in , Re for the inlet orifice meter: $\alpha = 0.6$

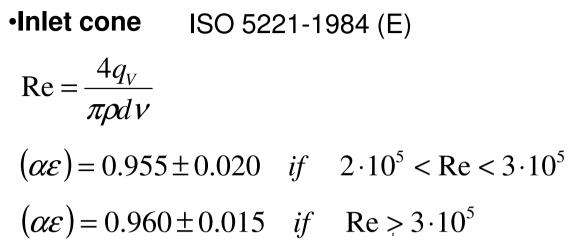


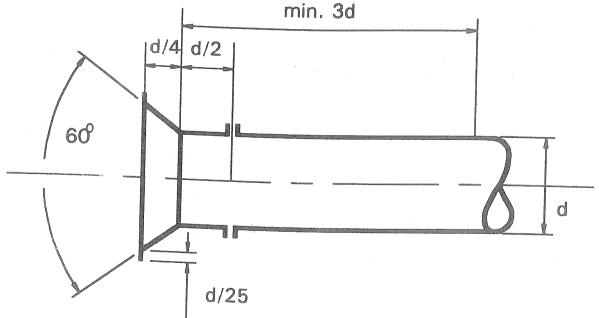

B/ Effect of compressibility

expansion coefficient ε dependence on d/d_in, Δp , p_in, κ for the inlet orifice meter: $\varepsilon = 1$

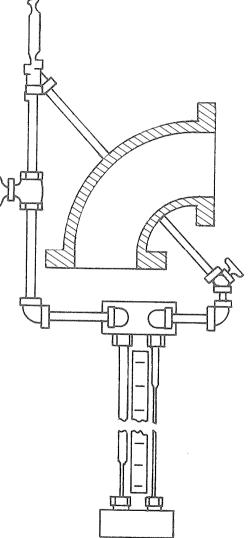
•Through-flow orifice plate (through-flow orifice meter)







Dr. János VAD: Flow measurements



Dr. János VAD: Flow measurements

6.3. Other types of traditional flowmeters Example:

•Elbow meter

Dr. János VAD: Flow measurements

6.4. Comparison between volume flow rate measurement deduced from velocity data (VEL) and using contraction elements (CON)

ASPECT	CON	VEL	
1/ Intrusiveness	"_"	"+"	
	Introduces considerable	Negligible intrusiveness	
	losses \Rightarrow the operating	(wall bores)	
	state may be modified \Leftrightarrow to		
	be included already in the		
	system design state		
2/ Following temporal	" + "	" _ "	
changes in the operational	Follows unsteady flow rate	Does not follow (surface	
state	continuously	integration)	
		$(\Leftrightarrow \text{correction?})$	
3/ Requirements	"_"	" + "	
	Strict (manufacturing,	Moderate (no requirements,	
	installation, system is to be	only recommendations,	
	stopped)	system may run	
		continuously)	

4/ Expenses	"_"	" + "	
	High (manufacturing, installation, operation: losses to be covered)	Moderate	
5/ Accuracy	"+" High (limited uncertainty, guaranteed by the standard) Legally <u>defensible</u> !	"_" Moderate (limits of uncertainty are not guaranteed) Legally assailable!	

CON: high-precision, continuous, legally defensible measurements (e.g. accounting, process control, etc.) VEL: occasional (case study) measurements, brief estimation (e.g. fault diagnostics)