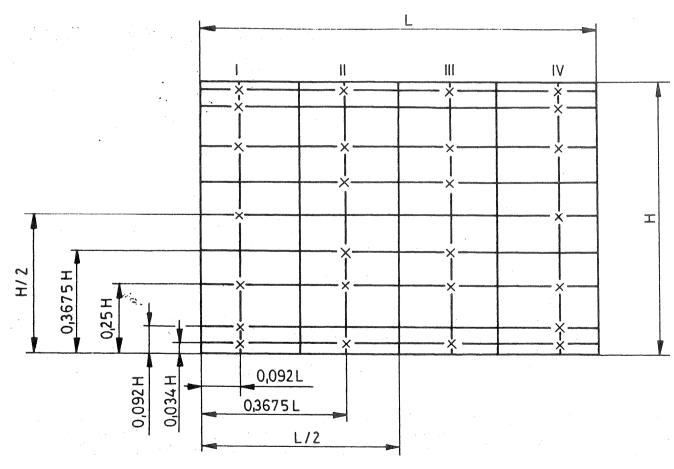

11. TRADITIONAL MEASUREMENT OF VOLUME FLOW RATE

- 11.1. Volume flow rate deduced from velocity measurement data
- 11.1.1. Application example
- 11.1.2. Principle and layouts

$$q_V = \int_{A'} \underline{v} \, \underline{dA'} = \int_{A} \underline{v} \, \underline{dA} = \int_{A} v_{\perp} \, dA$$

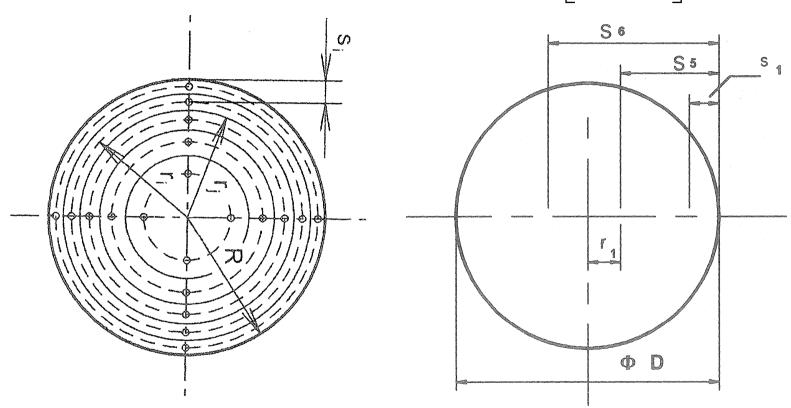
$$\approx \sum_{i=1}^{n} v_{\perp i} \Delta A_{i} = \Delta A_{i} \sum_{i=1}^{n} v_{\perp i}$$


$$= n \cdot \Delta A_i \left(\frac{1}{n} \sum_{i=1}^n v_{\perp i} \right) = A \overline{v}_{\perp}$$

DISCRETISATION:

For rectangular cross-sections:

- •k x k
- •Log-lin method ISO 3966-1977



Dr. János VAD: Flow measurements

Dr. János VAD: Flow measurements

For circular cross-sections: •10-point method

$$v(r_i) = v_{\text{max}} \left[1 - \left(\frac{r_i}{R} \right)^n \right]$$

 $s_i/D = 0.026$; 0.082; 0.146; 0.226; 0.342; 0.658; 0.774; 0.854; 0.918; 0.974

Accurate integration: for 2nd order paraboloid profile only!

Dr. János VAD: Flow measurements

•Log-lin method ISO 3966-1977

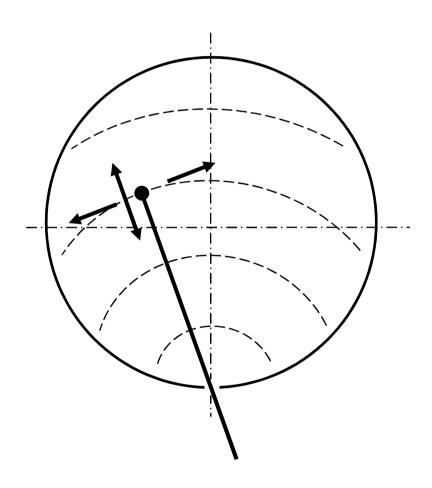
3 partial areas

$$v_i(y) = A_i \lg y + B_i y + C_i$$

$$s_i/D = 0.032$$
; 0.135; 0.321; 0,679; 0.865; 0.968

General notes

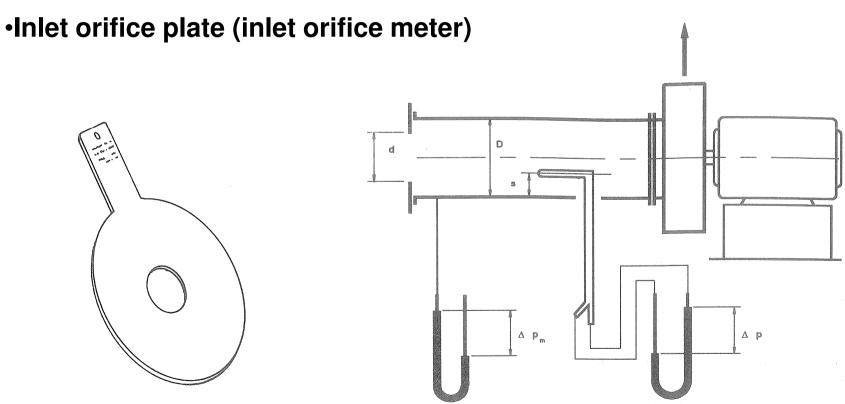
- •The nose of the probe is to be adjusted parallel to the wall of the duct
- •P_dyn_ref Check of steadiness


$$v_{ref \, 0} = \sqrt{\frac{2}{\rho}} \, p_{dyn_ref \, _0} \qquad v_{ref \, _i} = \sqrt{\frac{2}{\rho}} \, p_{dyn_ref \, _i}$$

$$v_i = \sqrt{\frac{2}{\rho} p_{dyn_i}}$$

Correction:
$$v_{i corr} = v_i \frac{v_{ref 0}}{v_{ref i}} = v_i \sqrt{\frac{p_{dyn_ref_0}}{p_{dyn_ref_i}}}$$

Obtainment of density


- Advantages and disadvantages
- •Quick scanning:

Dr. János VAD: Flow measurements

11.2. Volume flow rate measurements using contraction elements

- 11.2.1. Application example
- 11.2.2. Principle and layouts

Dr. János VAD: Flow measurements

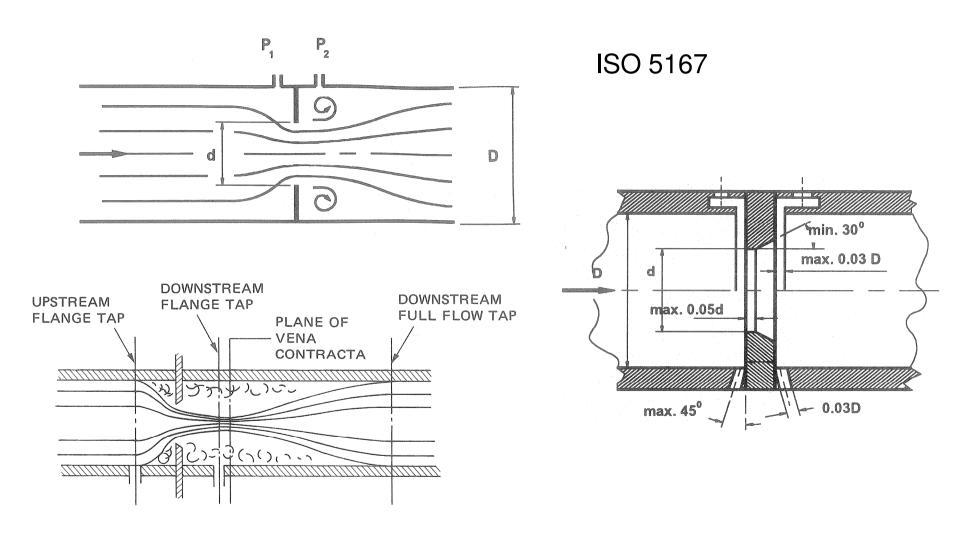
Assumption of ideal fluid: inviscid, incompressible flow

$$p_{0} = p + \rho \frac{v^{2}}{2} \qquad v = \sqrt{\frac{2}{\rho}} (p_{0} - p) = \sqrt{\frac{2}{\rho}} \Delta p_{m}$$

$$q_{V} = \frac{d^{2}\pi}{4} v = \frac{d^{2}\pi}{4} \sqrt{\frac{2}{\rho}} \Delta p_{m}$$

Reality: viscous, compressible flow

A/ Effect of viscosity


flow coefficient α dependence on d/d_in, Re for the inlet orifice meter: $\alpha = 0.6$

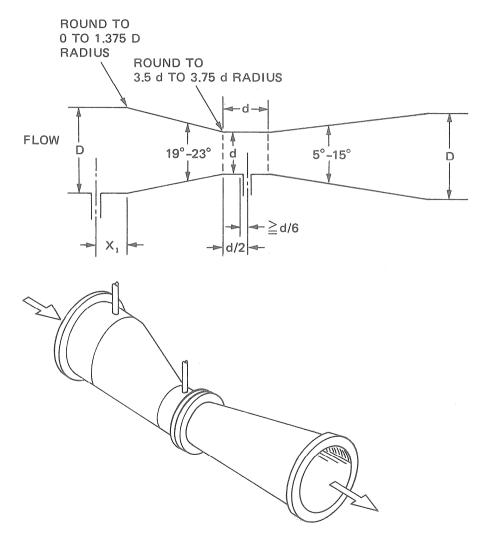
$$q_{V} = \alpha \varepsilon \frac{d^{2}\pi}{4} \sqrt{\frac{2}{\rho} \Delta p_{m}}$$

B/ Effect of compressibility

expansion coefficient ε dependence on d/d_in , Δp , p_in , κ for the inlet orifice meter: $\varepsilon = 1$

Through-flow orifice plate (through-flow orifice meter)

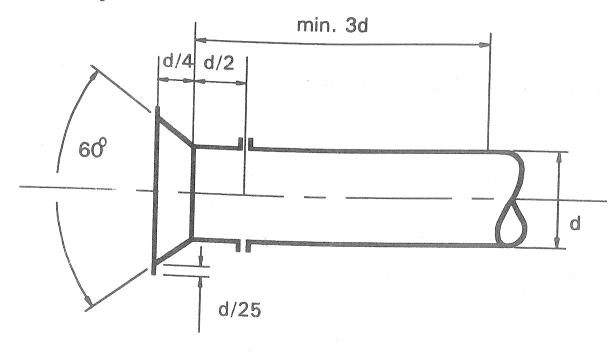
Dr. János VAD: Flow measurements


- Geometry
- •α, ε
- •Installation Examples
- •Accuracy Examples
- Problems

$$q_V = \alpha \, \varepsilon \frac{d^2 \pi}{4} \sqrt{\frac{2}{\rho} \Delta p_m}$$

Dr. János VAD: Flow measurements

•Venturi meter ISO 5167

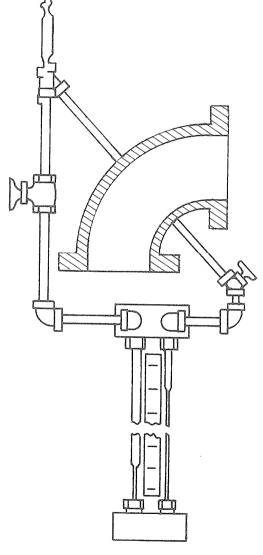

Dr. János VAD: Flow measurements

•Inlet cone ISO 5221-1984 (E)

$$Re = \frac{4q_V}{\pi \rho dV}$$

$$(\alpha \varepsilon) = 0.955 \pm 0.020$$
 if $2 \cdot 10^5 < \text{Re} < 3 \cdot 10^5$

$$(\alpha \varepsilon) = 0.960 \pm 0.015$$
 if Re > 3.10^5



Dr. János VAD: Flow measurements

11.3. Other types of traditional flowmeters

Example:

•Elbow meter

Dr. János VAD: Flow measurements

11.4. Comparison between volume flow rate measurement deduced from velocity data (VEL) and using contraction elements (CON)

ASPECT	CON	VEL
1/ Intrusiveness	"_"	"+"
	Introduces considerable	Negligible intrusiveness
	losses \Rightarrow the operating	(wall bores)
	state may be modified ⇔ to	
	be included already in the	
	system design state	
2/ Following temporal	"+"	" _"
changes in the operational	Follows unsteady flow rate	Does not follow (surface
state	continuously	integration)
		(⇔ correction?)
3/ Requirements	"_"	"+"
	Strict (manufacturing,	Moderate (no requirements,
	installation, system is to be	only recommendations,
	stopped)	system may run
		continuously)

4/ Expenses	"_"	"+"
	High (manufacturing, installation, operation: losses to be covered)	Moderate
5/ Accuracy	"+"	" <u> </u>
	High (limited uncertainty,	Moderate (limits of
	guaranteed by the standard)	uncertainty are not
	Legally <u>defensible!</u>	guaranteed)
		Legally <u>assailable!</u>

CON: high-precision, continuous, legally defensible measurements (e.g. accounting, process control, etc.)

VEL: occasional (case study) measurements, brief estimation (e.g. fault diagnostics)