6. Laser Doppler Anemometry

Introduction to principles and applications

Characteristics of LDA

- Invented by Yeh and Cummins in 1964
- Velocity measurements in Fluid Dynamics (gas, liquid)
- Up to 3 velocity components
- Non-intrusive measurements (optical technique)
- Absolute measurement technique (no calibration required)
- Very high accuracy
- Very high spatial resolution due to small measurement volume
- Tracer particles are required

Applications of LDA

- Laminar and turbulent flows
- Investigations on aerodynamics
- Supersonic flows
- Turbines, automotive etc.
- Liquid flows
- Surface velocity and vibration measurement
- Hot environments (Flames, Plasma etc.)
- Velocity of particles
- etc, etc, etc.

LDA - Fringe Model

- Focused Laser beams intersect and form the measurement volume
- Plane wave fronts: beam waist in the plane of intersection
- Interference in the plane of intersection
- Pattern of bright and dark stripes/planes

Velocity = distance/time

LDA - Fringe Model

- The fringe model assumes as a way of visualization that the two intersecting beams form a fringe pattern of high and low intensity.
- When the particle traverses this fringe pattern the scattered light fluctuates in intensity with a frequency equal to the velocity of the particle divided by the fringe spacing.

Laser, Characteristics and Requirements

Transmitting Optics

Receiving Systems

System Configurations

LDA Fibre Optical System

60 mm and 85 mm FiberFlow probes

The small integrated 3D FiberFlow probe

3-D LDA Applications

- Measurements of boundary layer separation in wind tunnels
- Turbulent mixing and flame investigations in combustors
- Studies of boundary layer-wake interactions and instabilities in turbines
- Investigations of flow structure, heat transfer, and instabilities in heat exchangers
- Studies of convection and forced cooling in nuclear reactor models
- Measurements around ship models in towing tanks

Seeding: ability to follow flow

Particle Frequency Response $\frac{d}{dt}U_{p} = -18 \frac{\nu}{d_{p}^{2}} \frac{U_{p} - U_{f}}{\rho_{p} / \rho_{f}}$

Particle	Fluid	Diameter (µm)	
		f = 1 kHz	f = 10 kHz
Silicone oil	atmospheric air	2.6	0.8
TiO ₂	atmospheric air	1.3	0.4
MgO	methane-air flame (1800 K)	2.6	0.8
TiO ₂	oxygen plasma (2800 K)	3.2	0.8

Seeding: scattered light intensity

- $d_p \cong 0.2\lambda$ $d_p \cong 1.0\lambda$ $d_p \cong 10\lambda$
- Polar plot of scattered light intensity versus scattering angle
- The intensity is shown on a logarithmic scale

Measurement of air flow around a helicopter rotor model in a wind tunnel

Photo courtesy of University of Bristol, UK

Measurement of water flow inside a pump model

Photo courtesy of Grundfos A/S, DK

Measurement of velocity profiles in a water pipe

Velocity profile, fully developed turbulent pipe flow

Measurement of flow field around a 1:5 scale car model in a wind tunnel

Photo courtesy of Mercedes-Benz, Germany

Measurement of wake flow around a ship model in a towing tank

Photo courtesy of Marin, the Netherlands

Measurement of air flow field around a ship model in a wind tunnel

Photo courtesy of University of Bristol, UK

Measurement of flow around a ship propeller in a cavitation tank

Comparison of EFD and CFD results

