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Many scales of turbulence

Density variation visualise the different scales of turbulence in a
mixing layer

Goal: Try to find some rules about the properties of turbulence
at different scales
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Kinetic energy

Kinetic energy:

E
def
=

1

2
uiui (1)

Its Reynolds decomposition:

E =
1

2
uiui =

1

2
(ui ui + 2u′iui + u′iu

′
i) (2)

Its Reynolds average

E =
1

2
(ui ui )︸ ︷︷ ︸
Ê

+
1

2
(u′iu

′
i)︸ ︷︷ ︸

k

= Ê + k (3)

• The kinetic energy of the mean flow: Ê
• The kinetic energy of the turbulence: k (Turbulent Kinetic
Energy, TKE)
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Richardson energy cascade
The poem

Lewis Fry Richardson (1920):
„Big whirls have little whirls,
that feed on their velocity;
and little whirls have lesser whirls,
and so on to viscosity.”

„Nagy örvény kisebbet plántál,
melyet sebességével táplál;
majd az még kisebbet szülvén,
viszkozításba tűnik szürkén.”
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Richardson energy cascade
Vortex scales

High Re flow is investigated
• Typical velocity of the flow U
• Typical length scale of the flow L
• Corresponding Reynolds number (Re = UL

ν ) is high

Turbulence is made of vortices of different sizes
Each class of vortex has:
• length scale: l
• velocity scale: u(l)
• time scale: τ(l) = l/u(l)
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Richardson energy cascade
The big scales

Biggest vortices
• size l0 ∼ L
• velocity u0 = u0(l0) ∼ u′ =

√
2/3k ∼ U

⇒ Re = u0l0
ν is also high

Fragmentation of the big vortices
• High Re corresponds to low viscous stabilisation
• Big vortices are unstable
• Big vortices break up into smaller ones
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Richardson energy cascade
To the small scales

Inertial cascade
• As long as Re(l) is high, inertial forces dominate, the
break up continues

• At small scales Re(l) ∼ 1 viscosity starts to be important
• The kinetic energy of the vortices dissipates into heat
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Richardson energy cascade
Connection between small and large scales

Dissipation equals production
• Dissipation is denoted by ε
• Because of the cascade can be characterised by large scale
motion

• Dissipation: ε ∼ kin. energy
timescale at the large scales

• By formula: ε = u2
0

l0/u0
=

u3
0

l0
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Transport equation of k
Definitions 1

NS symbol
For the description of development rules, it is useful to define
the following NS symbol:

NS(ui)
def
= ∂tui + uj∂jui = −

1

ρ
∂ip+ ν∂jsij︸ ︷︷ ︸
∂jtij

(4)

where: sij
def
= 1

2(∂iuj + ∂jui) is the deformation (rate of strain)
part of the derivative tensor ∂jui.
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Transport equation of k
Definitions 2

Let us repeat the development of the Reynolds equation!

NS(ui + u′i) (5)

∂tui + uj ∂jui = ∂j

[
− 1

ρ
p δij + νs ij − u′iu′j

]
︸ ︷︷ ︸

Tij

(6)
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The TKE equation

Taking the trace of
(NS(ui)−NS(ui) )u′j + (NS(uj)−NS(uj) )u′i

∂tk+uj ∂jk = −aijsij︸ ︷︷ ︸
Production

+ ∂j

[
u′j

(p′
ρ
+ k′

)
− νu′is′ij

]
︸ ︷︷ ︸

Transport

− ε︸︷︷︸
Dissipation

(7)

• Dissipation: ε def
= 2νs′ijs

′
ij

• Anisotropy tensor: aij
def
= u′iu

′
j −

1
3 u
′
lu
′
l︸︷︷︸

2k

δij

Deviator part of the Reynolds stress tensor
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The TKE equation
Meaning of the terms

Production

• Expression: P def
= −aijsij

• Transfer of kinetic energy from mean flow to turbulence
• The same term with opposite sign in the equation for kin.

energy of mean flow

• The mechanism to put energy in the ‘Richardson’ cascade
• Happens at the large scales

Miklós Balogh Turbulence II. 2017. 12 / 35



Turbulence
II.

Miklós
Balogh

Scales

TKE eq.

Modelling

Boundaries

Inlet

The TKE equation
Meaning of the terms (contd.)

Dissipation

• Expression: ε def
= 2νs′ijs

′
ij

• Conversion of kinetic energy of turbulence to heat
• Work of the viscous stresses at small scale (s′ij)

• The mechanism to draw energy from the ‘Richardson’
cascade

• Happens at the small scales

P = ε if the turbulence is homogeneous (isotropic), as in the
„Richardson” cascade
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The TKE equation
Meaning of the terms (contd.)

Transport

• Expression: ∂j

[
u′j

(
p′

ρ + k′
)
− νu′is′ij

]
• Transport of turbulent kinetic energy in space

• The expression is in the form of a divergence (∂j�j)
• Divergence can be reformulated to surface fluxes (G-O

theorem)
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Idea of RANS modelling

• Solving the Reynolds averaged NS for the averaged
variables (u , v , w , p )

• The Reynolds stress tensor u′iu
′
j is unknown and has to be

modelled
• Modelling should use the available quantities (u , v , w , p )

Usefulness
• If the averaged results are useful for the engineers
• i.e. the fluctuation are not interesting „only” their effect on
the mean flow

• If modelling is accurate enough
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Eddy Viscosity modell

Idea
• Effect of turbulence is similar to effect of moving molecules
in kinetic gas theory

• The exchange of momentum between layers of different
momentum is by the perpendicularly moving molecules

• Viscous stress is computed by: Φij = 2νSij
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Eddy Viscosity model (contd.)

In equations...
• Only the deviatoric part is modelled
• The trace (k) can be merged to the pressure (modified
pressure), and does not need to be modelled

• Modified pressure is used in the pressure correction
methods to satisfy continuity (see Poisson eq. for pressure)

u′iu
′
j −

2

3
kδij = −2νtSij (8)
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Eddy Viscosity

Viscosity is a product of a length scale (l′) and a velocity
fluctuation scale (u′)
• The length scale has to be proportional to the distance,
what the fluid part moves by keeping its momentum

• The velocity fluctuation scale should be related to the
velocity fluctuation caused by the motion of the fluid part

νt ∼ l′u′ (9)

Newer results supporting the concept
Coherent structure view of turbulence, proves that there are
fluid parts (vortices) which keep their properties for a while,
when moving
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Two equations models

• Length (l′) and velocity fluctuation scales (u′) are
properties of the flow and not the fluid, they are changing
spatially and temporally

• PDE’s for describing evolutions are needed

Requirements for the scales
• Has to be well defined
• Equation for its evolution has to be developed
• Has to be numerically nice’
• Should be measurable easily to make experimental
validation possible
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k-e modell

Velocity fluctuation scale
• TKE is characteristic for the velocity fluctuation
• It is isotropic (has no preferred direction)

u′ ∼
√
k (10)

Length scale
• Integral length scale is well defined (see correlations)
• No direct equation is easy to develop
• Length scale is computed through the dissipation

Recall: ε = u30
l0
⇒ l′ ∼ k3/2

ε

Miklós Balogh Turbulence II. 2017. 20 / 35



Turbulence
II.

Miklós
Balogh

Scales

TKE eq.

Modelling

Boundaries

Inlet

Equation for the eddy viscosity

νt = Cν
k2

ε
(11)

Cν is a constant to be determined by theory or experiments...

Our status...?
• We have two unknowns (k, ε) instead of one (νt)
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k model equation

Equation for k was developed, but there are unknown terms:

∂tk+uj ∂jk = −aijsij︸ ︷︷ ︸
Production

+ ∂j

[
u′j

(p′
ρ
+ k′

)
− νu′is′ij

]
︸ ︷︷ ︸

Transport

− ε︸︷︷︸
Dissipation

(12)

Production
Production is directly computable, by using the eddy viscosity
hypothesis

P = −aijSij = 2νtSij Sij (13)
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k model equation

Dissipation
Separate equation will be derived

Transport ∂jTj
• Can be approximated by gradient diffusion hypothesis

Tj =
νt
σk
∂jk (14)

• σk is of Schmidt number type to rescale νt to the required
diffusion coeff.

• To be determined experimentally
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Summarised k model equation

∂tk + uj ∂jk = 2νtSij Sij − ε− ∂j
( νt
σk
∂jk
)

(15)

• Everything is directly computable (except ε)
• The LHS is the local and convective changes of k

• Convection is an important property of turbulence (it is
appropriately treated by these means)
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Model equation for ε

• It is assumed that it is described by a transport equation
• Instead of derivation, based on the k equation

∂tε+ uj ∂jε = C1εP
ε

k
− C2εε

ε

k
− ∂j

( νt
σε
∂jε
)

(16)

• Production and dissipation are rescaled ( εk ) and ‘improved’
by constant coefficients (C1ε, C2ε)

• Gradient diffusion for the transport using Schmidt number
of σε

• The ε equation is not very accurate! :)
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Constants of the standard k-e model

Cν = 0.09 (17)
C1ε = 1.44 (18)
C2ε = 1.92 (19)
σk = 1 (20)
σε = 1.3 (21)

Miklós Balogh Turbulence II. 2017. 26 / 35



Turbulence
II.

Miklós
Balogh

Scales

TKE eq.

Modelling

Boundaries

Inlet

Example for the constants
Homogeneous turbulence

dtk = P − ε (22)

dtε = C1εP
ε

k
− C2εε

ε

k
(23)
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Example for the constants
Decaying turbulence

Since P = 0 the system of equations can be solved easily:

• k(t) = k0

(
t
t0

)−n

• ε(t) = ε0

(
t
t0

)−n−1
• n = 1

C2ε−1
• n is measurable ‘easily’
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k-ω modell

• k equation is the same

• ω def
= 1

Cν
ε
k Specific dissipation, turbulence frequency (ω)

• equation for ω similarly to ε equation
• transport equation, with production, dissipation and

transport on the RHS

• ω equation is better close to walls
• ε equation is better at far-field

⇒ SST model blends the two type of length scale equations,
depending on the wall distance
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Required Boundary Conditions

The turbulence model PDE’s are transport equations, similar to
the energy equation
• Local change
• Convection
• Source terms
• Transport terms
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Inlet Boundary Conditions

• Neumann or Dirichlet or mixed type of BC can be used
generally

• Inlet is usually Dirichlet (specified value)

Final goal
• How to prescribe k and ε or ω at inlet boundaries?
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Approximation of inlet BC’s
Turbulence intensity

To use easy quantities, which can be guessed
Develop equations to compute k and ε or ω from quantities,
which can be guessed by engineers

Turbulence intensity

Tu
def
= u′

u =

√
2/3k

u
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Approximation of inlet BC’s
Length scale

Length scale

l′ ∼ k3/2

ε ⇒ ε

• From measurement (using Taylor hypothesis)
• Law of the wall (later)
• Guess from hydraulic diameter l ≈ 0.07dH
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Importance of inlet BC’s

If turbulence is governing a flow
• Example: Atmospheric flows, where geometry is very
simple (flat land, hill) turbulence is complex

• by spatial history of the flow
• over rough surface
• including buoyancy effects

• Sensitivity to turbulence at the inlet has to be checked
• the uncertainty of the simulation can be recognised
• measurement should be included
• the simulation domain should be extended upstream
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Questions?

Thanks for your attention!
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