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Solution of systems of algebraic 

equations in CFD 

Dr. Gergely Kristóf 

26-th September 2012 

The Poisson equation must be 

solved in every time step 

 

PfP 

in - method: 

in pressure based methods: 
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A simple 2D example 

=0 

(BC of 1-st kind) 

4 x 4 intervalls 
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The computational domain: 

We discretize this by using compass notations: 
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hyx   PNEPWS Qh24  On isotropic  

mesh: 

PNEPWS Qh24  

-4 1 0 1 0 0 0 0 0 

1 -4 1 0 1 0 0 0 0 

0 1 -4 0 0 1 0 0 0 

1 0 0 -4 1 0 1 0 0 

0 1 0 1 -4 1 0 1 0 

0 0 1 0 1 -4 0 0 1 

0 0 0 1 0 0 -4 1 0 

0 0 0 0 1 0 1 -4 1 

0 0 0 0 0 1 0 1 -4 

=0 

4 x 4 intervallum 

Ai,j= 

iij,i QφA 

We have 9 unknowns. 

The system now reads: 

The number of unknowns for 101x101 mesh N=104, therefore the number of 

elements of matrix A is 108. 

In matrix form 

As efficient as any other method for a general case, but it does not make use of 

the favorable characteristics of the matrix.  

1-st step Elimination: 
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A21/A11 times the first row is 

subtracted from the second row. 

The first element of the second row 

will become 0. Similarly, we 

eliminate the other elements of the 

second row up to the column N-1. 

Repeated for  

every further  

rows. 

2-nd step Backsubstitution: 
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The operation cost of the method is N3/3, out of which the back substitution  

requires only N2/2 operations. Even if A is sparse U is not spares. The total  

memory requirement on a 2D mesh of 101x101 nodes is 400 Mb. We don’t need  

such an accurate solution because the discretization error is large anyway.  

Gauss elimination 

    nnnn QQAA  

nn QA  

The solution is refined step by step: approximation of  in the n-th step is n. 

By omitting the vector notations: n : residual 

nn  The error: 

QNM nn   1Iterative methods: 

  nn 1 NMA For the converged solution: , therefore: 

  nnnnnn AQMQNM  1


n

Let’s subtract M n  from both sides: 

correction: 
nnM   This is the correction equation. 

The better M approximates A is the faster the method converges. 

M must be easy to solve eg. diagonal, tri-diagonal, or a  matrix. 

Iterative methods 

Thus, the exacts solution is 

obtained in n=1 step if A matrix 

is solved for the error. We can 

approximate A! 
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M is a diagonal matrix. 

Example program: 

- The program... 

- Major characteristics of the result... 

- Required number of iterations ... =0 

2p intervals 

Number of unknowns: 

(2p-1)2 . 

Jacobi iteration 
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M is a  matrix.  

Gauss-Seidel relaxation 

These terms are already known due to the calculation  

sequence 

- It requires halve as much iterations … 

- and halve as much memory.  

- The error is asymmetrically distributed. 
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Line relaxation 

these values are known 

Note - Much more efficient methods based on the tri-diagonal solver also exist: 

Operator Splitting (or Alternating Direction Implicit, ADI) methods. 

these obtained line by line from the 

tri-diagonal system solved by the  

Thomas algorithm. 
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The problem: 

The above mentioned methods are only smoothing the solution.  

The boundary effects need a very long time to penetrate the computational domain. 

 

Solution: 

We need to use coarser meshes too. The first estimates of the correction can be  

obtained on a coarser mesh, than can be refined on the fine mesh.  
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The correction equation for a simplified 1D problem: 

Multigrid method 
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We omit the iteration indices: 
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RESTRICTION 

these terms are cancelled 

PROLONGATION 

1. Restriction: i → I 

2. Calculation of I . Eg. in 3D we have an 8 fold reduced number of unknowns. 

3. Prolongation of I to the fine mesh. (i),  

4. Smoothing on the fine mesh. 

Restriction: Prolongation: 

Why shouldn’t we use an even more coarse mesh when calculating I ? 

1. Evaluation of the residuals on the finest mesh.  

2. Consecutive restrictions of  to every coarser mesh.  

3. Solution of the system on the coarsest mesh. (Even by using a direct method.)  

4. Consecutively for every finer mesh: 

- Prolongation of  

- Smoothing (Eg. by using Gauss-Seidel relaxation.) 

5. Correction of . (Only on the finest mesh). 

Generalization to 2D or 3D: 
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p Nline N Jacobi G-S Line rlx. Multigrid 

3 7 49 40 20 10 11 

4 15 225 160 80 40 24 

5 31 961 640 320 160 38 

6 63 3969 2560 1280 640 44 

7 127 16129 10240 5120 2560 46 

p Nline N Jacobi G-S Line rlx. Multigrid 

3 7 49 200 100 50 220 

4 15 225 800 400 200 480 

5 31 961 3200 1600 800 760 

6 63 3969 12800 6400 3200 880 

7 127 16129 51200 25600 12800 920 

Number of iterations in 2D: 

Number of operations / N: 

Computational cost 

On fine meshes multigrid prevails! 


