
2012.09.26.

1

Solution of systems of algebraic

equations in CFD

Dr. Gergely Kristóf

26-th September 2012

The Poisson equation must be

solved in every time step

 

PfP 

in - method:

in pressure based methods:

Q
yx










2

2

2

2 

A simple 2D example

=0

(BC of 1-st kind)

4 x 4 intervalls

N

S

E W P

The computational domain:

We discretize this by using compass notations:

P
SPPNWPPE Q

yyyxxx








 










 






















11

hyx   PNEPWS Qh24  On isotropic

mesh:

PNEPWS Qh24  

-4 1 0 1 0 0 0 0 0

1 -4 1 0 1 0 0 0 0

0 1 -4 0 0 1 0 0 0

1 0 0 -4 1 0 1 0 0

0 1 0 1 -4 1 0 1 0

0 0 1 0 1 -4 0 0 1

0 0 0 1 0 0 -4 1 0

0 0 0 0 1 0 1 -4 1

0 0 0 0 0 1 0 1 -4

=0

4 x 4 intervallum

Ai,j=

iij,i QφA 

We have 9 unknowns.

The system now reads:

The number of unknowns for 101x101 mesh N=104, therefore the number of

elements of matrix A is 108.

In matrix form

As efficient as any other method for a general case, but it does not make use of

the favorable characteristics of the matrix.

1-st step Elimination:

















332313

322212

312111

,,,

,,,

,,,

AAA

AAA

AAA

A21/A11 times the first row is

subtracted from the second row.

The first element of the second row

will become 0. Similarly, we

eliminate the other elements of the

second row up to the column N-1.

Repeated for

every further

rows.

2-nd step Backsubstitution:

















33

3222

312111

00

0

,

,,

,,,

U

UU

UUU nn

n
n

U

Q


i,i

N

kk

ki,ki

i
U

UQ 




 1





The operation cost of the method is N3/3, out of which the back substitution

requires only N2/2 operations. Even if A is sparse U is not spares. The total

memory requirement on a 2D mesh of 101x101 nodes is 400 Mb. We don’t need

such an accurate solution because the discretization error is large anyway.

Gauss elimination

    nnnn QQAA  

nn QA  

The solution is refined step by step: approximation of  in the n-th step is n.

By omitting the vector notations: n : residual

nn  The error:

QNM nn   1Iterative methods:

  nn 1 NMA For the converged solution: , therefore:

  nnnnnn AQMQNM  1


n

Let’s subtract M n from both sides:

correction:
nnM   This is the correction equation.

The better M approximates A is the faster the method converges.

M must be easy to solve eg. diagonal, tri-diagonal, or a  matrix.

Iterative methods

Thus, the exacts solution is

obtained in n=1 step if A matrix

is solved for the error. We can

approximate A!

2012.09.26.

2

P
n
N

n
E

n
P

n
W

n
S Qh214   

 P
n
N

n
E

n
W

n
S

n
P Qh21

4

1
 

M is a diagonal matrix.

Example program:

- The program...

- Major characteristics of the result...

- Required number of iterations ... =0

2p intervals

Number of unknowns:

(2p-1)2 .

Jacobi iteration

P
n
N

n
E

n
P

n
W

n
S Qh2111 4   

 P
n
N

n
E

n
W

n
S

n
P Qh2111

4

1
  

M is a  matrix.

Gauss-Seidel relaxation

These terms are already known due to the calculation

sequence

- It requires halve as much iterations …

- and halve as much memory.

- The error is asymmetrically distributed.

N

S

E W P

P
n
N

n
E

n
P

n
W

n
S Qh21111 4   

Line relaxation

these values are known

Note - Much more efficient methods based on the tri-diagonal solver also exist:

Operator Splitting (or Alternating Direction Implicit, ADI) methods.

these obtained line by line from the

tri-diagonal system solved by the

Thomas algorithm.

N

S

E W P

The problem:

The above mentioned methods are only smoothing the solution.

The boundary effects need a very long time to penetrate the computational domain.

Solution:

We need to use coarser meshes too. The first estimates of the correction can be

obtained on a coarser mesh, than can be refined on the fine mesh.

Q
x





2

2

  iiii Q
x

  112
2

1




  n
ii

n
i

n
i

n
i Q

x



  112

2
1

  n
i

n
i

n
i

n
i

x



  112

2
1

The correction equation for a simplified 1D problem:

Multigrid method

11

2111122

2

1

2

1

2

1

2

1
2

2

1

2

11

















iii

iiiiiiiii
x






I-1 I+1

X

i

I

x

i-1 i+1 i-2 i+2

  iiii
x




  112
2

1
We omit the iteration indices:

   11222
2

4

1
2

4

1
  iiiiii

x




  IIII
X




  112
2

1
RESTRICTION

these terms are cancelled

PROLONGATION

1. Restriction: i → I

2. Calculation of I . Eg. in 3D we have an 8 fold reduced number of unknowns.

3. Prolongation of I to the fine mesh. (i),

4. Smoothing on the fine mesh.

Restriction: Prolongation:

Why shouldn’t we use an even more coarse mesh when calculating I ?

1. Evaluation of the residuals on the finest mesh.

2. Consecutive restrictions of  to every coarser mesh.

3. Solution of the system on the coarsest mesh. (Even by using a direct method.)

4. Consecutively for every finer mesh:

- Prolongation of 

- Smoothing (Eg. by using Gauss-Seidel relaxation.)

5. Correction of . (Only on the finest mesh).

Generalization to 2D or 3D:

2012.09.26.

3

p Nline N Jacobi G-S Line rlx. Multigrid

3 7 49 40 20 10 11

4 15 225 160 80 40 24

5 31 961 640 320 160 38

6 63 3969 2560 1280 640 44

7 127 16129 10240 5120 2560 46

p Nline N Jacobi G-S Line rlx. Multigrid

3 7 49 200 100 50 220

4 15 225 800 400 200 480

5 31 961 3200 1600 800 760

6 63 3969 12800 6400 3200 880

7 127 16129 51200 25600 12800 920

Number of iterations in 2D:

Number of operations / N:

Computational cost

On fine meshes multigrid prevails!

