# Solution of systems of algebraic equations in CFD

Dr. Gergely Kristóf 26-th September 2012

## The Poisson equation must be solved in every time step

in  $\Psi$ - $\omega$  method:

$$\Delta \psi = -\omega \longrightarrow \psi$$

in pressure based methods:

$$\Delta P = \nabla \cdot f \longrightarrow P$$

# A simple 2D example

The computational domain:

$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = Q$$

We discretize this by using compass notations:



$$\frac{1}{\varDelta x} \left( \frac{\phi_E - \phi_P}{\varDelta x} - \frac{\phi_P - \phi_W}{\varDelta x} \right) + \frac{1}{\varDelta y} \left( \frac{\phi_N - \phi_P}{\varDelta y} - \frac{\phi_P - \phi_S}{\varDelta y} \right) = Q_P$$

$$\Delta x = \Delta y = h$$

On isotropic mesh: 
$$\Delta x = \Delta y = h$$
  $\phi_S + \phi_W - 4\phi_P + \phi_E + \phi_N = h^2 Q_P$ 

### In matrix form

$$\phi_S + \phi_W - 4\phi_P + \phi_E + \phi_N = h^2 Q_P$$





The system now reads:

 $A_{i,j} \varphi_i = Q_i$ 

The number of unknowns for 101x101 mesh N=104, therefore the number of elements of matrix A is 108.

# Gauss elimination

As efficient as any other method for a general case, but it does not make use of the favorable characteristics of the matrix.

 $A_{2,1}$   $A_{2,2}$   $A_{2,3}$  $\begin{pmatrix} A_{3,1} & A_{3,2} & A_{3,3} \end{pmatrix}$  second row up to the column N-1.

**1-st step Elimination:**  $A_{21}/A_{11}$  times the first row is subtracted from the second row.

Repeated for  $\left( egin{array}{ccc} A_{1,1} & A_{1,2} & A_{1,3} \end{array} 
ight)$  The first element of the second row every further will become 0. Similarly, we eliminate the other elements of the

2-nd step Backsubstitution:

$$\begin{pmatrix} U_{1,1} & U_{1,2} & U_{1,3} \\ 0 & U_{2,2} & U_{2,3} \\ 0 & 0 & U_{3,3} \end{pmatrix}$$

$$\phi_n = \frac{Q_n}{U_{nn}}$$

$$\phi_i = \frac{Q_i - \sum_{k=k+1}^{N} U_{k,i} \phi_k}{U_{i:i}}$$

The operation cost of the method is N3/3, out of which the back substitution requires only N²/2 operations. Even if A is sparse U is not spares. The total memory requirement on a 2D mesh of 101x101 nodes is 400 Mb. We don't need such an accurate solution because the discretization error is large anyway.

#### Iterative methods

The solution is refined step by step: approximation of  $\phi$  in the n-th step is  $\phi^n$ .

By omitting the vector notations:  $A\phi^n = Q - \rho^n$   $\rho^n$ : residual

 $A \varepsilon^n = A(\phi - \phi^n) = Q - (Q - \rho^n) = \rho^n$ 

Thus, the exacts solution is obtained in n=1 step if A matrix is solved for the error. We can

 $M \phi^{n+1} = N\phi^n + Q$ 

For the converged solution:  $\phi^{n+1} = \phi^n = \phi$  , therefore: A = M - N

Let's subtract  $M\phi^{\,n}\,$  from both sides:

$$M(\phi^{n+1} - \phi^n) = N \phi^n + Q - M \phi^n = Q - A \phi^n = \rho^n$$

 $M \delta^n = \rho^n$  This is the correction equation. correction:  $\delta^n$ 

The better M approximates A is the faster the method converges. M must be easy to solve eg. diagonal, tri-diagonal, or a  $\Delta$  matrix.

#### Jacobi iteration

$$\phi_S^n + \phi_W^n - 4\phi_P^{n+1} + \phi_E^n + \phi_N^n = h^2 Q_P \qquad M \text{ is a diagonal matrix}.$$

$$\phi_P^{n+1} = \frac{1}{4} \left( \phi_S^n + \phi_W^n + \phi_E^n + \phi_N^n - h^2 Q_P \right)$$



(2p-1)2.

Example program:

- The program...
- Major characteristics of the result...
   Required number of iterations ...

## Gauss-Seidel relaxation



These terms are already known due to the calculation

$$\phi_P^{n+1} = \frac{1}{4} \left( \phi_S^n + \phi_W^{n+1} + \phi_E^n + \phi_N^{n+1} - h^2 Q_P \right)$$

- It requires halve as much iterations ...
- and halve as much memory.
- The error is asymmetrically distributed.

#### Line relaxation



$$\phi_{S}^{n} + \phi_{W}^{n+1} - 4\phi_{P}^{n+1} + \phi_{E}^{n+1} + \phi_{N}^{n+1} = h^{2}Q_{P}$$
these values

these obtained line by line from the tri-diagonal system solved by the Thomas algorithm.

Note - Much more efficient methods based on the tri-diagonal solver also exist: Operator Splitting (or Alternating Direction Implicit, ADI) methods.

The problem:

The above mentioned methods are only smoothing the solution.

The boundary effects need a very long time to penetrate the computational domain.

We need to use coarser meshes too. The first estimates of the correction can be obtained on a coarser mesh, than can be refined on the fine mesh.

# Multigrid method

The correction equation for a simplified 1D problem:

$$\frac{\partial^2 \phi}{\partial x^2} = Q$$

$$\frac{1}{\Delta x^2} (\phi_{i-1} - 2\phi_i + \phi_{i+1}) = Q_i$$

$$\frac{1}{\Delta x^2} (\phi_{i-1}^n - 2\phi_i^n + \phi_{i+1}^n) = Q_i - \rho_i^n$$

$$\frac{1}{4r^2} \left( \varepsilon_{i-1}^n - 2\varepsilon_i^n + \varepsilon_{i+1}^n \right) = \rho_i^n$$

We omit the iteration indices:  $\frac{1}{4r^2} \left( \varepsilon_{i-1} - 2\varepsilon_i + \varepsilon_{i+1} \right) = \rho_i$ 



$$\begin{split} \frac{1}{4x^2} & \left( \frac{1}{2} \varepsilon_{i-2} - \varepsilon_{i-1} + \frac{1}{2} \varepsilon_i + \varepsilon_{i-1} - 2 \varepsilon_i + \varepsilon_{i+1} + \frac{1}{2} \varepsilon_i - \varepsilon_{i+1} + \frac{1}{2} \varepsilon_{i+2} \right) = \\ \text{these terms are cancelled} & = \frac{1}{2} \rho_{i-1} + \rho_i + \frac{1}{2} \rho_{i+1} \end{split}$$



# Generalization to 2D or 3D:

Restriction:



- 1. Restriction:  $\rho_i \to \rho_i$ 2. Calculation of  $\epsilon_i$ . Eg. in 3D we have an 8 fold reduced number of unknowns. 3. Prolongation of  $\epsilon_i$  to the fine mesh.  $(\epsilon_i)$ ,
- 4. Smoothing on the fine mesh.

Why shouldn't we use an even more coarse mesh when calculating  $\varepsilon_{l}$ ?

- 1. Evaluation of the residuals on the finest mesh.
- Consecutive restrictions of  $\rho$  to every coarser mesh.
- Solution of the system on the coarsest mesh. (Even by using a direct method.)
- Consecutively for every finer mesh:
- Prolongation of  $\varepsilon$
- Smoothing (Eg. by using Gauss-Seidel relaxation.)
- Correction of φ (Only on the finest mesh).

|      | С                 | ompu      | ıtatior | nal co      | st           |           |
|------|-------------------|-----------|---------|-------------|--------------|-----------|
| Numb | er of iteration   | ns in 2D: |         |             |              |           |
| р    | N <sub>line</sub> | N         | Jacobi  | G-S         | Line rlx.    | Multigr   |
| 3    | 7                 | 49        | 40      | 20          | 10           | 11        |
| 4    | 15                | 225       | 160     | 80          | 40           | 24        |
| 5    | 31                | 961       | 640     | 320         | 160          | 38        |
| 6    | 63                | 3969      | 2560    | 1280        | 640          | 44        |
| 7    | 127               | 16129     | 10240   | 5120        | 2560         | 46        |
| Numb | er of operation   | ons / N:  |         |             |              |           |
| р    | N <sub>line</sub> | N         | Jacobi  | G-S         | Line rlx.    | Multigr   |
| 3    | 7                 | 49        | 200     | 100         | 50           | 220       |
| 4    | 15                | 225       | 800     | 400         | 200          | 480       |
| 5    | 31                | 961       | 3200    | 1600        | 800          | 760       |
| 6    | 63                | 3969      | 12800   | 6400        | 3200         | 880       |
| 7    | 127               | 16129     | 51200   | 25600       | 12800        | 920       |
|      |                   |           |         | On fine mes | hes multigri | d prevail |