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The Poisson equation must be
solved in every time step

in ¥-o method: Ay=—-0 — Yy

in pressure based methods: AP=V-f — P

The computational domain:

A simple 2D example
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We discretize this by using compass notations:
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mesh: M=Ay=h ¢s+dy —4dp +d +dy =Qp

In matrix form
g5+ —4dp +de +y =?Qp
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The system now reads:
Aei=Q

The number of unknowns for 101x101 mesh N=104, therefore the number of
elements of matrix A is 108,

Gauss elimination

As efficient as any other method for a general case, but it does not make use of
the favorable characteristics of the matrix.
1-st step Elimination:  Ay/A;, times the first row is
subtracted from the second row.
A1 A, Az Thefirstelement of the second row | Repeated for
A will become 0. Similarly, we every further
Ao1 A2 o3| eliminate the other elements of the | TOWS-
A3,1 AS,Z Ag‘g second row up to the column N-1.

2-nd step Backsubstitution: ¢ Qn
Ul,l U1,2 Ul,a " Unn
0 Uy, U J
22 F23 Q- 2 Ui
0 0 U g = ket
i

i
The operation cost of the method is N3/3, out of which the back substitution
requires only N2/2 operations. Even if A is sparse U is not spares. The total

memory requirement on a 2D mesh of 101x101 nodes is 400 Mb. We don’t need
such an accurate solution because the discretization error is large anyway.

Iterative methods
The solution is refined step by step: approximation of ¢ in the n-th step is ¢".
By omitting the vector notations: A¢" = Q_p” p" : residual

The error: e"=g—¢"
Thus, the exacts solution is
n_ _sN_o_lo_,")= 5" obtained in n=1 step if A matrix
Ag" = A(¢ 4 )7 Q (Q p )7 p is solved for the error. We can
approximate Al

Iterative methods: M ¢"+1 =Ng"+Q
For the converged solution: ¢n+1 =¢" =¢ therefore:. A=M—N
Let's subtract M@ " from both sides:

Mg )=Ng" +Q-Mg" =Q- Ag" = "

—
correction: " Ms" = pn This is the correction equation.

The better M approximates A is the faster the method converges.
M must be easy to solve eg. diagonal, tri-diagonal, or a A matrix.
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Jacobi iteration
¢Sn +¢F/ _4¢S+1+¢E +¢,'\1‘ = thp M is a diagonal matrix.
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Example program:

- The program...
- Major characteristics of the result...

Gauss-Seidel relaxation
N ¢Q +¢/T/+1_4¢S+1+¢E +¢,':"+1 = hZQP Mis a A matrix.

These terms are already known due to the calculation
S sequence

Bt =l g2+ Qe )

- It requires halve as much iterations ...
- and halve as much memory.

$=0 - Required number of iterations ...
- The error is asymmetrically distributed.
2° intervals
Number of unknowns:
(2r-1)?
Line relaxation Multigrid method
N ¢Sn +m+1 B 4¢S+1 +¢E+1 . ¢R‘+1 _ hZQP The correction equation for a simplified 1D problem:
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these values are known
these obtained line by line from the
tri-diagonal system solved by the
Thomas algorithm.

Note - Much more efficient methods based on the tri-diagonal solver also exist:
Operator Splitting (or Alternating Direction Implicit, ADI) methods.

The problem:
The above mentioned methods are only smoothing the solution.
The boundary effects need a very long time to penetrate the computational domain.

Solution:
We need to use coarser meshes too. The first estimates of the correction can be
obtained on a coarser mesh, than can be refined on the fine mesh.

i(m—zf». Fha)=Q

i(ﬁl 24+ )= Q- P
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E(Sirh ~2¢ +€i"+1)= o

We omit the iteration indices: A— giflfzgi +gi+1 =p

XZ
L5

=2 -1 0| i+l i+2
I-1 | 1+1
AX
1(1 1 1 1
Tixz Egi_z -84 +Egi +&i4 —2¢ +5i+1+55i —&i +Egi+2 =
these terms are cancelled 1 1
=§Pi4+Pi +5Pi+1

1
Al (gi-z -2 +5i+2)zz(Pi4 +2p; + piaa)
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Generalization to 2D or 3D:
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1. Restriction: p, — p

2. Calculation of & . Eg. in 3D we have an 8 fold reduced number of unknowns.
3. Prolongation of & to the fine mesh. (g),

4. Smoothing on the fine mesh.

Why shouldn’t we use an even more coarse mesh when calculating ¢, ?

. Evaluation of the residuals on the finest mesh.
. Consecutive restrictions of p to every coarser mesh.
. Solution of the system on the coarsest mesh. (Even by using a direct method.)
. Consecutively for every finer mesh:
- Prolongation of &
- Smoothing (Eg. by using Gauss-Seidel relaxation.)
5. Correction of ¢ (Only on the finest mesh).
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Computational cost

Number of iterations in 2D:

] Niine N
3 7 49
4 15 225
5 31 961
6 63 3969
7 127 16129
Number of operations / N:
] Niine N
3 7 49
4 15 225
5 31 961
6 63 3969
7 127 16129

Jacobi
40
160
640
2560
10240

Jacobi
200
800

3200
12800
51200

G-S Line rix. Multigrid
20 10 "
80 40 24
320 160 38
1280 640 44
5120 2560 46
G-s Line rix. Multigrid
100 50 220
400 200 480
1600 800 760
6400 3200 880
25600 12800 920

On fine meshes multigrid prevails!

2012.09.26.



