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Numerical integration of the fluxes and the 

volume sources 
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Interpolation of the fluxes must be at least as  

accurate as the integration scheme. 
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Alternative surface integration schemes: 
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Steady flow of a constant density fluid with heat conduction  

in a constant cross-section pipe 
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Energy equation: 

Application in 1D 
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Discretization 
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, 0 we FF... in a more simple form: 
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In a 3D case we would have 4 more F values. 
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Application of the CDS scheme 
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Face temperatures (Te and Tw) are obtained by a linear interpolation: 
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The resultant linear equation for TP: 

Since AP=AW+AE, the linear equation for AP can be regarded as a weighted  

average of the neighboring T values. TP cannot be an extreme value, if the „A”  

values are positive. 
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We can solve this system by Gauss elimination. 

The matrix of the linear system is a tridiagonal matrix which requires only 

2n operations in the case of n cells.  

(This special case of the Gauss elimination is called the Thomas algorithm).  

Solution of the system of linear 

algebraic equations 
For 4 cells: 

Unfortunately, such an efficient direct solution is not possible in 2D and 3D 

(iterative methods must be applied). 

TA() 
TB() 

TC() TD() 
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Analytical solution Implementation in Excel macro 

1. Similar solution is obtained with 

different input parameters. 

2. The error reduces with N2. 

(Second order accuracy.) 

3. Sometimes the solution 

oscillates.  

What is the condition for the 

onset of instabilities? 
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Transportivity 
By physical means: 

TE must have a decreasing affect on TP for an increasing value of Pe,  

because the heat conduction is overridden by the adverse convective flux. 

Does the numerical scheme behaves so? 
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The cell Peclet number is the ratio of convective and conductive heat fluxes. 

In the case of Pex>>2 the value of AE can be a very large negative value.  

This is not sensible from physical point of view.  

This case is also numerically unstable.  

Upwind Differencing Scheme (UDS) 

for u>=0: 

for u<0: 
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Further numerical experiments... 

Accuracy reduced to 1-st order. 
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It is like if the heat conductivity grew. 

Let’s substitute the numerical approximation of 

the temperature gradient: 
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Artificial diffusion 
An important source of numerical errors. It came from the inaccurate interpolation: 
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The positivity of the “A”s must be ensured. 

We need to apply unwinding only if the absolute value of Pex is too high.: 
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Hybrid Differencing Scheme (HDS) 

It is of second order accuracy for 

conduction dominated problems.  

(For small Pex cases.) 

by Spalding (1972) 
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Second Order Upwinding (SOU) 

We can interpolate 

T within the simulation 

cell by using its  

gradient: 

Wall fluxes than can  

be than evaluated like: 

Firstly: 

Secondly: 
gradients are limited on such a way that they shouldn’t 

introduce oscillations. For details on the gradient limiters 

please refer: C Hirsch, Numerical computation of internal 

and external flows. 

Gradients are calculated in 2 steps: 

TP 

The numerical diffusion in practice 

UDS 

SOU 

10x10 20x20 40x40 80x80 Mesh size: 

2D heat transport with zero heat conductivity (=0). 

1.0 0.5 0.0 


