Finite volume discretization

Gergely Kristóf 19-th September 2012

Numerical integration of the fluxes and the volume sources

$$\oint \overbrace{\rho \phi v} d\underline{A} = \oint \overbrace{\Gamma \nabla \phi} d\underline{A} + \int_{V} q_{\phi} dV$$
convective flux conductive flux volume source

$$F_e = \int \underline{f} \cdot d\underline{A} = \left\langle f_\perp \right\rangle_e A_e \cong \frac{1}{2} \left(\underline{f}_P + \underline{f}_E \right)_\perp A_e \qquad \qquad \text{2-nd order accurate}$$

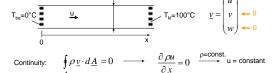
Compass notation:

 $F_e \cong \frac{A_e}{6} \Big(\underline{f}_{ne} + 4 \underline{f}_e + \underline{f}_{se} \Big)_{\!\!\perp}$ 4-th order accurate (Simpson formula)

Interpolation of the fluxes must be at least as accurate as the integration scheme.

Application in 1D

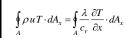
Steady flow of a constant density fluid with heat conduction in a constant cross-section pipe

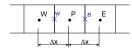


Energy equation:

Applied for one cell: in +x direction

Discretization





The numerical integral of fluxes:
$$(\rho u T)_e \lambda - (\rho u T)_w \lambda = \left(\frac{\lambda}{c_v} \frac{\partial T}{\partial x}\right)_e \lambda - \left(\frac{\lambda}{c_v} \frac{\partial T}{\partial x}\right)_w \lambda$$

$$C_e = C_w = \rho u$$
 $D_e = D_w = \frac{\lambda}{c_v \Delta x}$

 $C_e T_e - C_w T_w = D_e (T_E - T_P) - D_w (T_P - T_W)$

 $F_{\varrho} - F_{w} = 0 \quad ,$... in a more simple form:

in which: $F_e = C_e T_e - D_e (T_E - T_P)$ in the total flux. In a 3D case we would have 4 more F values.

Application of the CDS scheme

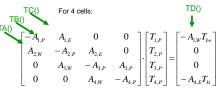
 $C_{e}T_{e} - C_{w}T_{w} = D_{e}(T_{E} - T_{P}) - D_{w}(T_{P} - T_{W})$

Face temperatures $(T_e \text{ and } T_w)$ are obtained by a linear interpolation: $\left[\underbrace{\frac{C_e}{2} (T_P + T_E) - D_e (T_E - T_P)}_{\text{The resultant linear equation for } T_P:} \right] - \left[\underbrace{\frac{C_w}{2} (T_W + T_P) - D_w (T_P - T_W)}_{\text{The resultant linear equation for } T_P:} \right] = 0$

 $A_P T_P = A_W T_W + A_E T_E$

Since $A_P = A_W + A_E$, the linear equation for A_P can be regarded as a weighted average of the neighboring T values. T_P cannot be an extreme value, if the "A" values are positive.

Solution of the system of linear algebraic equations



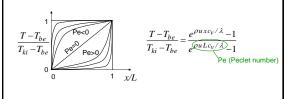
We can solve this system by Gauss elimination.

The matrix of the linear system is a tridiagonal matrix which requires only 2n operations in the case of n cells.

(This special case of the Gauss elimination is called the Thomas algorithm).

Unfortunately, such an efficient direct solution is not possible in 2D and 3D (iterative methods must be applied).

Analytical solution



Implementation in Excel macro

- 1. Similar solution is obtained with $P_{e} = \frac{\rho u L}{r}$ different input parameters.
- 2. The error reduces with N2. (Second order accuracy.)

3. Sometimes the solution oscillates.

What is the condition for the $Pe_{Ax} = \frac{\rho u \Delta x}{\lambda/c_y} > 2$ onset of instabilities?

Transportivity

By physical means:

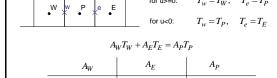
T_F must have a decreasing affect on T_P for an increasing value of Pe, because the heat conduction is overridden by the adverse convective flux. Does the numerical scheme behaves so?

$$\begin{split} A_E &= D_e - C_e / 2 \\ C_e &= \rho u \quad D_e = \frac{\lambda}{c_v \Delta x} \quad Pe = \frac{\rho u L}{\lambda / c_v} \\ A_E &= \frac{D_e}{2} \left(2 - \frac{C_e}{D_e} \right) = \frac{D_e}{2} \left(2 - \frac{\rho u \Delta x}{\lambda / c_v} \right) = \frac{D_e}{2} \left(2 - Pe_{\Delta x} \right) \end{split}$$

The cell Peclet number is the ratio of convective and conductive heat fluxes. In the case of $Pe_{\Delta x}$ >2 the value of A_E can be a very large negative value. This is not sensible from physical point of view.

This case is also numerically unstable.

Upwind Differencing Scheme (UDS)

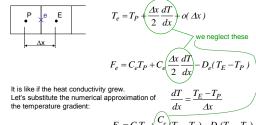


Further numerical experiments...

Accuracy reduced to 1-st order.

Artificial diffusion

An important source of numerical errors. It came from the inaccurate interpolation:



$$D_e = \frac{\lambda}{c} \xrightarrow{Ax} \frac{\lambda_{artif.}}{c} = \frac{\rho u}{2} \xrightarrow{\lambda_{artif.}} \frac{2\rho u c_v \Delta x}{2}$$

Hybrid Differencing Scheme (HDS)

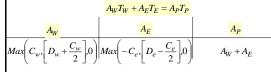
 $\label{eq:by-palding-parameter} by Spalding (1972)$ The positivity of the "A"s must be ensured. We need to apply unwinding only if the absolute value of Pe_{xx} is too high.:

$$Pe_{\Delta x} \le -2$$
 $F_e = C_e T_E$

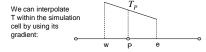
$$-2 < Pe_{\Delta x} \le 2$$
 $F_e = C_e \left[\frac{1}{2} \left(1 + \frac{2}{Pe_{\Delta x}} \right) T_P + \frac{1}{2} \left(1 - \frac{2}{Pe_{\Delta x}} \right) T_E \right]$

$$2 < Pe_{\Delta x} = T_E - C_E T_E$$
 It is of second order accuracy for

conduction dominated problems. (For small Pe_{Ax} cases.)



Second Order Upwinding (SOU)



Wall fluxes than can be than evaluated like:

$$T_e = T_P + \frac{dT}{dx} \bigg|_{P} \frac{\Delta x}{2}$$

Gradients are calculated in 2 steps:

Firstly:

$$\frac{dT}{dx}\Big|_{P} = \frac{T_e' - T_e}{\Delta x}$$

$$T_{e'} = \frac{T_P + T_E}{2}$$
, $T_{w'} = \frac{T_W + T_F}{2}$

Secondly: $\frac{dT}{dx}\Big|_{P}$

gradients are limited on such a way that they shouldn't introduce oscillations. For details on the gradient limiters please refer: C Hirsch, Numerical computation of internal and external flows.

