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Continuity: 

Navier-Stokes 

equation: 

An iterative method will be used for solving the discrete forms of the governing  

equations. 

Segregated iteration. (Separate equation is solved for every field variable, in  

which every other field variable is treated as a constant value.) 

This system is not suitable for segragated iteration. For example:  

Governing equations for incompressible flows 
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How can we calculate pn and how will the continuity be fulfilled for un+1? 

?? 

Two possible solutions 

• - method 
Eliminates the pressure from the equation of motion by 

the introduction of a potential function. 

• Pressure correction method 
A new equation for the pressure field is solved instead of 

the continuity eq. 

 

Volume flow-rate in 1 m wide domain. 

No flow through =const. lines, therefore 

iso-lines of  are streamlines. 

Now, we look at two close points 

on different streamlines: 
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The total differential of : 

Definition of  (for 2D flows): u
y
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Stream function () 

Any  fulfills the continuity: 0
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 is a vector field in 3D cases: 

Vector potential 

v

Continuity is automatically fulfilled, 

also in 3D: 
0 v
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It is conform with the  

original definition: therefore, for 2D flows: 

In 2D we reduce the number of unknown field variables: (u,v →). 

This advantage will be lost in 3D. 

 in 3D 
Vorticity in 3D: v
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
In 2D  is a scalar field (having only the  

z component) 

An important special case: 0

 can be expressed  

in terms of : 2
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Only the Laplace equation  

need to be solved for : 
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Vorticity () 

this is a Poisson’s equation 

for the . 
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We take the curl of the Navier-Stokes equation: 
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dWe obtain a usual transport  

equation with convection and 

conduction terms: 

The conduction coefficient is  

the kinematic viscosity. 

The vorticity transport equation in 2D 

The Poisson equation for  

in a 2D case : 

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νThe vorticity transport equation: 

Segregated iteration: 
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The - method for steady flow 

Boundari cond. for : - Inlet: BC of 1st kind. 

- Outlet: BC of second kind (Neumann BC). 

- Inlets and walls: BC of 1st kind. 

- Outlet: BC of second kind (Neumann BC). 

for : 

Problem: we cannot impose pressure boundary conditions.  

(Pressure field is unknown.) 
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Shorthand notations: 0/pP 

Let’s take the divergence of the equation of motion by assuming: 
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This is a Poisson equation for the  

pressure. 

and   f. 

This is useful for calculating the pressure field in - methods. 
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Continuity: 

The equation of motion  

(g=0 is assumed): 

Pressure based solution 
The pressure equation 

Let’s apply the Euter method for the numerical integration of the equation of 

motion: 
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The numerical error of the solution of the Poisson equation will be accumulated 

in the continuity equation. 

Can the Poisson equation for the pressure 

be a substitute for the continuity equation? 
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and we apply the numerical Laplacian for discretizing the Poisson equation for the 

pressure:  

With given right hand side and given boundary conditions, this is a linear system  

of algebraic equations. Let ’s suppose, we solve this for Pn, then we update the 

velocity field. Now, let’s check the divergence of the updated velocity field: 

≈0  only approximate solution 

      is possible! 
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Instead of the original Poisson equation we solve the following: 

The accumulation of numerical errors can be 

avoided 
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then we update the velocity by using the eq. of motion: 
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Now we check the divergence of the new velocity field: 

≈0     this is what we solve for Pn. 

The error of continuity equation is limited by the error of solution of the discrete 

Poisson equation in the last time step. 

Not the Poisson equation is important, but the continuity. 
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1-st step 

we evaluate: 

2-nd step 

we solve: 

Projection method 
The same method with different notations: 

3-rd step 

we evaluate: 









  n

i
n
i P

~
*u

~

t
tu

~





11Let’s check it! 

this (=0) is solved in the 2-nd step! 
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Steady flows 

 Explicit discretization in time does not fulfill an 

important practical requirement:  

The method is only conditionally stabile, therefore time 

step size is limited. If steady state is slowly achieved, we 

need to make a high number of time steps. 

111   n

i
i

n
,i

n
P,iP P

~
QuAuA 

n

i
i

*
,iP,iP P

~
QuAuA  

*

n

i
PP

*
,ii

P,i P
~

AA

uAQ
u 




 1* 

n

i
P

P,iP,i P
~

A
uu 

1* 

01  n
iu

~

11n 1   n

i
P

P,iP,i P
~

A
uu


iP
n u

~
AP

~ 
1

és 

*
iu

1-st step 

1nP

2-nd step 

We want to fulfill in step n+1 the following with the highest possible accuracy: 

Only the old pressure value can 

be used... (the continuity is 

not accurately fulfilled in this  

stage) 

un is used as an initial value  

for u*. 

un+1 must fulfill the continuity! 

Let’s take the numerical divergence: 

un+1 is calculated from an approximate  

formula from the new pressure field: 3-rd step 

Due to using old values for the neighboring 

velocities in the 3-rd step this is not fully 

accurate. We need to iterate. 

P-u iteration for steady flow (1) 

P-u iteration for steady flow (2) 

• Inner iteration: 
Iterative solution methods are used for solving the 
algebraic systems in 1-st and in 2-nd step. Unusually 
only 1 inner iteration step is done.  

• Pressure equation: 
The Poisson equation is solved for pressure correction 
(not for pressure). This reduces the round-off error.  

• SIMPLE, SIMPLEC, SIMPLER, PISO 

• Time dependent models: 
When modeling transient flows we can include the time 
derivatives into Q. This way, the application of implicit 
integration scheme is possible, which allows much larger 
time steps. 

 


