
© Fluent Inc. 2/26/2008© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

User-Defined Functions
Appendix:
C-Programming

User-Defined Functions
Appendix:
C-Programming

Advanced UDF
Modeling Course

Advanced UDF
Modeling Course

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-2

Advanced FLUENT Training
UDF Mar 2007

C and UDF

� Many UDFs can be written and used with some limited
knowledge of ‘C’

� This presentation will introduce only essential syntax and
aspects

� In general, Macros (hook-ups) are available for accessing
various locations in the code during the iterations

� FLUENT has a large number of internal macro-s and variables
that are not accessible from UDFs (Primarily due to copyright
reasons)

� It is advisable to check with your support engineer about the
general concept/task that you want to model using UDF

� More elaborate knowledge of ‘C’ helps reducing UDF
development and debugging time but need not necessarily
provide any extended capabilities

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-3

Advanced FLUENT Training
UDF Mar 2007

A Brief Introduction to ‘C’

� C functions

� C data types

� Pointers and arrays

� Expressions and statements

� C arithmetic and logical operators

� Control flow

� C preprocessor directives

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-4

Advanced FLUENT Training
UDF Mar 2007

The Basic Form of a C Function

/*A simple C function*/ /* Comments are delineated by the character sequence */

/* comments can be placed anywhere in a C listing
use comments liberally to document your UDFs */

#include “udf.h” /* A preprocessor directive for including files */

#define PI 3.14159 /* A preprocessor directive for macro substitution */

real a = 1.2345; /* Global scope: variables defined outside the function body for use

by all functions which follow the definition */

int my-function(int x) /* Function declaration (integer type) */

{ /* C functions are enclosed by curly braces ({...}) */

/* All C statements must end with a semicolon (;) */

int y,z; /* Local scope: Declare data type for variables y, z variables

defined within the function body are local to the function */

y = 11; /* Set y = 11 */

z = a*(x+y)*PI; /* Compute z */

printf(“z = %d”,z); /* Print output to screen */

return z; /* Return integer value */

} /* Right curly brace closes body of function */

� If a function is defined with a specific type, it should return a value of the same
type (using the return statement)

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-5

Advanced FLUENT Training
UDF Mar 2007

Compilers

� C compilers include a library of standard math, I/O, and utility functions
which can be used in your C code

� Common I/O functions
� scanf (...) - formatted read (like FORTRAN READ)
� printf(...) - formatted print (like FORTRAN WRITE)

� Common math functions
� sin (x) - sine function
� cos (x) - cosine function
� exp (x) - exponential function
� sqrt(x) - square root function

� For the UDF compiler, all of the standard functions are
defined in the file udf.h
�� NOTE:NOTE: you do not need a copy of udf.h when you compile your UDF;you do not need a copy of udf.h when you compile your UDF;

the solver gets this from the Fluent.Inc/fluent6.x/src/ directorthe solver gets this from the Fluent.Inc/fluent6.x/src/ directoryy

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-6

Advanced FLUENT Training
UDF Mar 2007

Comparison with FORTRAN

� C functions are similar to FORTRAN function subroutines

/*A simple C function*/ C An equivalent FORTRAN function

int myfunction(int x) INTEGER FUNCTION MYFUNCTION(X)

{

int y,z; INTEGER X,Y,Z

y = 11; Y = 11

z = x+y; Z = X+Y

printf(“z = %d”,z); WRITE (*,100) Z

return z; MYFUNCTION = Z

100 FORMAT(“Z = “,I5)

} END

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-7

Advanced FLUENT Training
UDF Mar 2007

C Data Types (1)

� The UDF interpreter supports standard C data types

� int,long - integer data types

� float,double, real - floating point (real) data types

� char - character data type

� Functions which do not return values are given the typevoid

void myfunction(int x) {...} /*No return needed*/

� You can convert from one type to another by “casting”

� a cast is denoted by(type) where the type isint, float, etc.

int x = 1;

float y = 3.14159;

int z = x+((int) y); /*z = 4*/

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-8

Advanced FLUENT Training
UDF Mar 2007

C Data Types (2)

� C also allows you to create “user-defined” types using typedef

typedef struct list { int a;

float b;

int c;};

typedef struct list mylist; /* mylist is of type structure list*/

mylist x,y,z; /* x,y,z are “struct list” type */

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-9

Advanced FLUENT Training
UDF Mar 2007

Pointers

� Pointers can also point to the beginning of an array (and thus pointers are
strongly connected to arrays in C)

content of address pointed to by ip = 1

� A pointer is a variable which contains theaddress of another variable

� Pointers are defined using the * notation
int *ip; /* a pointer to an integer variable */

� We can make a pointer variable point to the address of predefined variable as
follows

int a=1;
int *ip;
ip = &a; /* &a returns the address of variable a */
printf(“content of address pointed to by ip = %d\n” , *ip);

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-10

Advanced FLUENT Training
UDF Mar 2007

Arrays
� Arrays of variables can be defined using the notation name[size]

wherename is the variable name andsize is an integer which defines
the number of elements in the array

� Some examples

int a[10];

float radii[5];

a[0] = 1;

radii[4] = 3.14159265;

� Notes about C arrays

— The index of C arrays start at 0

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-11

Advanced FLUENT Training
UDF Mar 2007

Expressions and Statements

� Arithmetic expressions in C look much like FORTRAN

� Functions which return values can be used in assignment statements

a = 1+(b-c)*d/4;
pi = 3.141592654;
area = pi*radius*radius;

b = myfunc(a); /* Function myfunc() is defined elsewhere */

c = pow(x,y); /* pow(x,y) returns x raised to power y */

� Functions can also be called without assignments

do-stuff(); /* Function do-stuff() takes no arguments */

printf(“x= %f\n”,x); /* printf(..) is a standard C library function */

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-12

Advanced FLUENT Training
UDF Mar 2007

Common C Operators

� Arithmetic operators

= assignment

+ addition

- subtraction

* multiplication

/ division

% modulo

++ increment

-- decrement

� Logical operators

< less than

<= less than or equal to

> greater than

>= greater than or equal
to

== equal to

!= not equal to

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-13

Advanced FLUENT Training
UDF Mar 2007

Control Flow - “If “and “If-else” Statements

� ‘ if ’ and‘if-else ’ statements � Example

if (logical-expression)

{statements}

if (logical-expression)

{statements}

else

{statements}

C Equivalent FORTRAN code

IF (X.LT.0.) THEN
Y = X/50.

ELSE
Y = X/25.

ENDIF

/* C code */

if (q != 1) {a = 0; b = 1;}

if (x < 0.)

y = x/50.;

else

y = x/25.;

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-14

Advanced FLUENT Training
UDF Mar 2007

for (begin ; end ; increment)
{statements}

where:

begin = expression, executed at beginning of loop

end = logical expression to test for loop termination

increment = expression which is executed at the end of each
loop iteration (usually incrementing a counter)

Control Flow - “For” Loops

Example:
C Equivalent FORTRAN code

INTEGER I,J
N = 10
DO I = 1,10
J = I*I
WRITE (*,*) I,J
ENDDO

/* C code:
Print integers 1-10 and
their squares */

int i, j, n = 10;
for (i = 1 ; i <= n ; i++)
{ j = i*i;

printf(“%d %d\n”,i,j);
}

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-15

Advanced FLUENT Training
UDF Mar 2007

The C Preprocessor

� The UDF interpreter supports C preprocessor directives

� Macro substitutions using:#define name replacement

#define RAD 1.2345

#define Area_Rectangle(x,y) x*y

� The preprocessor simply substitutes the characters of name with those of
replacement

� File inclusion using the directive#include

#include “udf.h”

#include “mystuff.h”

� The files named in quotes must reside in your current directory (except

for udf.h which is read automatically by the solver as noted earlier)

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-16

Advanced FLUENT Training
UDF Mar 2007

Exploring C Further

� Some topics notdiscussed here
� while and do-while control statements
� structures and unions
� recursion
� reading and writing files
� many details!

� For more information on C programming, you may consult any general
text (there are manyavailable)
A good choice is

The C Programming Language, 2nd Ed .
by Brian Kernighan and Dennis Ritchie
Prentice-Hall, 1988

