
© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

FLUENT UDF:

Introduction

FLUENT UDF:

Introduction

Advanced UDF
Modeling Course
Advanced UDF
Modeling Course

1-2© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

Fluent User Services Center

www.fluentusers.com

Advanced FLUENT Training
UDF Mar 2007

Welcome to Fluent Europe

� Introducing your trainer….

� Domestic issues:
� Toilets –all in entrance lobby near reception

� Tea, Coffee and Water –help yourself, in customer dining room

� Fire Alarm and Escape Routes (note alarms are tested at 09:15 Tuesday)

� Visitors Badge –Leave on front reception desk if you go out at lunchtime,
and when you leave for the evening.

� Smoking –Outside only.

� Taxis –Please let reception know by

lunchtime if you need a taxi for the
evening.

1-3© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

Fluent User Services Center

www.fluentusers.com

Advanced FLUENT Training
UDF Mar 2007

Agenda
09:15 – 09:30 General Introduction to User Defined Functions
09:30 – 10:00 Fluent Data Structure and Macros
10:00 – 10:15 Break

10:15 – 10:45 Interpreted / Compiled UDF
10:45 – 11:45 UDF Hooks - ‘DEFINE’ Macros
11:45 – 12:30 Tutorial Session
12:30 – 13:30 Lunch

13:30 – 14:00 User Defined Scalars and Memories
14:00 – 14:30 UDF for Discrete Phase Model
14:30 – 15:00 UDF for Multiphase Flows
15:00 – 15:15 Break

15:15 – 16:00 Tutorial-session-2
16:00 – 16:30 UDF for Parallel FLUENT
16:30 – 17:00 Miscellaneous Functions / Macros

1-4© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

Fluent User Services Center

www.fluentusers.com

Advanced FLUENT Training
UDF Mar 2007

Why Build UDFs?

� Standard interface can not be programmed to anticipate all needs

� Customization of boundary conditions, source terms, reaction rates
(volume and surface), properties

� Solution initialization

� Adjust functions (once per iteration)

� Solve for user defined scalars

� Modify model specific parameters

� Many more...

� Limitations
� Not all solution variables or solver models can be accessed by UDFs

� Example: Cannot change specific heat (would require additional
solver capabilities)

1-5© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

Fluent User Services Center

www.fluentusers.com

Advanced FLUENT Training
UDF Mar 2007

User Access Points to the Solver
� Fluent is so designed that the user can access the solver at some strategic

instances during the solution process

Flow
Diagram

of
FLUENT
Solvers

Segregated Solver Coupled Solver

Initialize Begin
Loop

Exit Loop Repeat

Check
Convergence

Update Properties Solve Eddy
Dissipation

Solve Turbulence
Kinetic Energy

Solve Species

Solve Energy

Solve Mass Continuity;
Update Velocity

Solve U-Momentum

Solve V-Momentum

Solve W-Momentum

Solve Mass
Momentum &

Energy

User-
defined
ADJUST

Source terms
Source terms

Source terms

Boxes in
red are
some
important
user
access
points

User

Defined
Initialize

User-Defined Properties

User-Defined Boundary Conditions

1-6© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

Fluent User Services Center

www.fluentusers.com

Advanced FLUENT Training
UDF Mar 2007

User Defined Functions in FLUENT

� UDF’s in FLUENT are available for:

� Profiles (Boundary Conditions)
velocity, temperature,
turbulence, species, scalars

� Source terms (Fluid and solid
zones)
mass, momentum, energy,
species, turbulence, scalars

� Properties

viscosity, conductivity, density,
scattering_phase_function (except
specific heat)

� Initialization

zone and variable specific
initialization

� Global Functions

adjust, read, write,
execute_on_demand

� Scalar Functions

unsteady term, flux vector,
diffusivity

� Model Specific Functions

reaction rates, discrete phase model,
turbulent viscosity

� User Defined Functions are not just any C-functions:

� User access needs specific “Type” of function calls
� These Function types or macros are defined in the header file (e.g.,

udf.h)

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

Fluent Data Structure

and Macros

Fluent Data Structure

and Macros

Advanced UDF
Modeling Course
Advanced UDF
Modeling Course

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary2-2

Fluent User Services Center

www.fluentusers.com

Advanced FLUENT Training
UDF Mar 2007

Data structures in FLUENT

Domain

CellCell

Thread

face

cellcell

Boundary (face thread or zone) Fluid (cell thread or zone)

Domain

Cell

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary2-3

Fluent User Services Center

www.fluentusers.com

Advanced FLUENT Training
UDF Mar 2007

The Domain
� “Domain” is the set of connectivity and hierarchy info for the entire

data structure in a given problem. It includes:
» all fluid zones (‘fluid threads’)
» all solid zones (‘solid threads’)
» all boundary zones (‘boundary threads’)

� Cell/face - Computational unit, face is one side.
Conservation equations are solved over a cell

� Thread - is the collection of cells or faces; defines a
fluid/solid/boundary zone

� FLUENT6 introduces the concept of multi-“domain” for multiphase
simulations (singlephase simulations use single domain only)

• Each phase has its own “Domain-structure”
• Geometric and common property information are shared

among ‘sub-domains’
• Multiphase UDF will be discussed later

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary2-4

Fluent User Services Center

www.fluentusers.com

Advanced FLUENT Training
UDF Mar 2007

The Threads
� A ‘Thread ’ is a sub-set of the ‘Domain ’ structure

� Individual ‘fluid ’, ‘ solid ’ and each ‘boundary ’ zones are
identified as ‘zones ’ and their datatype is maintained as ‘Thread ’

� ‘Zone ’ and‘Thread ’ terms are often used interchangeably

� But Zone/Thread ID and Thread-datatype are different:

• Zones are identified at mesh level with an ‘integer’ ID in
the Define ���� Boundary Condition panel

• Threads, a Fluent-specific datatype, that store structured

information about the mesh, connectivity, models, property,
etc. all in one place

• Users identify zones through the ID ’s

• Zone/Thread-ID and Thread s are correlated through
UDF macro’s

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary2-5

Fluent User Services Center

www.fluentusers.com

Advanced FLUENT Training
UDF Mar 2007

Domain and Threads

Wall

Porous
Medium

Fluid-1

Solid-1

Solid-2

Outlet

Wall

Fluid-2
Inlet

Domain Domain
ofof

AnalysisAnalysis

CorrespondingCorresponding
Data setData set

Inlet
Fluid-2

Fluid-1

Solid-1

Outlet

Porous
Medium

Solid-2Wall

Domain Domain

Threads Threads

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary2-6

Fluent User Services Center

www.fluentusers.com

Advanced FLUENT Training
UDF Mar 2007

Cell and Face Datatypes

� Control volumes (equivalent of ‘FEM:Elements’) of fluid and solid
zones are called ‘cell s’ in FLUENT

� The data structure for the cell zones is typed as ‘cell_t ’ (the cell

thread)

� The data structure for the cell faces is typed as ‘face_t ’ (the face

thread)

� A fluid or solid zone is called a cell zone, which can be accessed by
using cell threads

� Boundary or internal faces can be accessed by using face threads

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary2-7

Fluent User Services Center

www.fluentusers.com

Advanced FLUENT Training
UDF Mar 2007

Some additional info on Faces

� Each Control volume will have a finite number of faces (4 for

tets, 6 for hex and 5 for pyramids, and wedges)

� Faces on the boundary are also typed ‘face_t ’; their

ensemble are listed as boundary face-threads with the

fluid & solid cell-threads under Define-

Boundary_Condition panel

� Those faces which are inside the flow-domain and do not

share any external boundary are not accessible from GUI

(because you do not need them)

� They can still be accessed from User-Defined-Functions

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary2-8

Fluent User Services Center

www.fluentusers.com

Advanced FLUENT Training
UDF Mar 2007

Cell- & face-Threads

TypeType ExampleExample DetailsDetails
Domain *d pointer to the collection of all threads
Thread *t pointer to a thread
cell_t c cell identifier
face_t f face identifier
Node *node pointer to a node

Boundary face-thread
the boundary-face ensembleFluid cell-thread

the Control-volume
ensemble Internal face-thread

the Internal-face ensemble
associated to cell-threads

Nodes

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary2-9

Fluent User Services Center

www.fluentusers.com

Advanced FLUENT Training
UDF Mar 2007

Geometry Macros

The argument(c,t) stands for acell, c of a thread, t

� C_NNODES(c, t); Number ofnodes in a cell

� C_NFACES(c, t); No. of faces in a cell

� F_NNODES(f, t); No. of nodes in a face

� C_CENTROID(x, c, t); x, y, z-coords ofcell centroid

� F_CENTROID(x, f, t); x, y, z-coords offace centroid

� F_AREA(A, f, t); Area vector of aface;

� NV_MAG(A); Area-magnitude

� C_VOLUME(c, t); Volume of acell

� C_VOLUME_2D(c, t); Volume of a 2Dcell

(Depth is 1m in 2D; 2*π m in axisymmetric)

� NODE_X(nn); Node x-coord;

� NODE_Y(nn); Node x-coord;

� NODE_Z(nn); Node x-coord;

Location of cell variables
C_CENTROID(X,c,t); X: X[3]

C_NNODES(c,t) = 8
C_NFACES(c,t) = 6
F_NNODES(f,t) = 4 each

A Hex cell
Faces

Nodes

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary2-10

Fluent User Services Center

www.fluentusers.com

Advanced FLUENT Training
UDF Mar 2007

Looping Macros for Geometry

� thread_loop_c(t, d); Loop overcell threads

� thread_loop_f(t, d); Loop overface threads

� begin_c_loop(c, t); Loop overcells in a cell thread

� end_c_loop(c, t);

� begin_f_loop Loop overfaces in a face thread

� end_f_loop

� f_edge_loop(f, t,en); Loop overedges in a face thread

� f_node_loop(f, t,nn); Loop overnodes in a face thread

� c_node_loop(c, t,nn); Loop overnodes in a cell thread

� c_face_loop(c, t,fn); Loop overfaces in a cell thread

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary2-11

Fluent User Services Center

www.fluentusers.com

Advanced FLUENT Training
UDF Mar 2007

Pointer to a Thread

int ID = 1;
Thread *tf =

Lookup_Thread(domain,ID);
begin_f_loop(f, tf)

{
F_CENTROID(FC, f, tf);
printf("x:%f y:%f",FC[0],
FC[1]);

}
end_f_loop(f, tf)

� Given the integerID of a thread , it is possible to retrieve the pointer to
that thread -

int ID = 1;
Thread *tf = Lookup_Thread(domain, ID);

� Conversely, given the pointer to a thread , it is possible to retrieve the
integer ID of that thread -

int ID = 1;
if (THREAD_ID(tf)==1)...

int ID = 1;
thread_loop_f (tf, domain)

{
if (THREAD_ID(tf)==1)

begin_f_loop(f, tf)
{

F_CENTROID(FC, f, tf);

printf("x:%f y:%f",FC[0],FC[1]);
}

end_f_loop(f, tf)
}

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary2-12

Fluent User Services Center

www.fluentusers.com

Advanced FLUENT Training
UDF Mar 2007

Cells across a face and Their Threads
� These macros identify the neighboring cells of a face

� This information may be required of some of the more sophisticated UDFs that
loop through
� faces of a boundary thread or
� a particular cell

� Associated with a given face f, and its thread tf, are potentially two adjacent
cells denoted c0 and c1 (face normals are always pointing outwardly)

� If the face is on the boundary of the domain, c1 is defined as NULL and
only c0 exists

� The following macros return the ID of the cells c0 and c1 , as well as the
associated threads:

c0 = F_C0(f,tf); /* returns thread ID for cell c0*/

tc0 = THREAD_T0(tf); /* returns the cell thread pointer for c0 */

c1 = F_C1(f,tf); /*returns thread ID for c1 */

tc1 = THREAD_T1(tf); /* returns the cell thread pointer for c1 */

c1,tc1

c0,tc0 f,tf

A_f

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary2-13

Fluent User Services Center

www.fluentusers.com

Advanced FLUENT Training
UDF Mar 2007

Cell Variables (1)

� C_R(c,t) Density

� C_P(c,t) Pressure
� C_U(c,t)

� C_V(c,t) Velocity components
� C_W(c,t)

� C_T(c,t) Temperature

� C_H(c,t) Enthalpy

� C_K(c,t) Turbulent kinetic energy

� C_D(c,t) Turbulent energy dissipation

� C_YI(c,t,i) Species mass fraction

� C_UDSI(c,t,i) User defined scalar

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary2-14

Fluent User Services Center

www.fluentusers.com

Advanced FLUENT Training
UDF Mar 2007

Cell Variables (2)

� C_DUDX(c,t)

� C_DUDY(c,t)

� C_DUDZ(c,t)

� C_DVDX(c,t)

� C_DVDY(c,t) Velocity derivatives
� C_DVDZ(c,t)

� C_DWDX(c,t)

� C_DWDY(c,t)

� C_DWDZ(c,t)

� C_MU_L(c,t)

� C_MU_T(c,t) Viscosities
� C_MU_EFF(c,t)

� C_DP(c,t)[i] Pressure derivatives

� C_D_DENSITY(c,t)[i] Density derivatives

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary2-15

Fluent User Services Center

www.fluentusers.com

Advanced FLUENT Training
UDF Mar 2007

Cell Variables (3)
� C_K_L(c,t)

� C_K_T(c,t) Thermal conductivities
� C_K_EFF(c,t)

� C_CP(c,t) Specific heat

� C_RGAS(c,t) Gas constant

� C_DIFF_L(c,t,i) Species diffusivity
� C_DIFF_EFF(c,t,i)

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary2-16

Fluent User Services Center

www.fluentusers.com

Advanced FLUENT Training
UDF Mar 2007

Face Variables

� F_P(f,t) Pressure
� F_U(f,t)

� F_V(f,t) Velocity components
� F_W(f,t)

� F_T(f,t) Temperature

� F_H(f,t) Enthalpy

� F_K(f,t) Turbulent kinetic energy

� F_D(f,t) Turbulent energy dissipation

� F_YI(f,t,i) Species mass fraction

� F_UDSI(f,t,i) User defined scalar

� F_PROFILE(f,t,i) Boundary profile storage

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary2-17

Fluent User Services Center

www.fluentusers.com

Advanced FLUENT Training
UDF Mar 2007

UDF Macro-s (Types of UDF)
� UDF’s in FLUENT are available for:

� Boundary conditions :Profiles

� Fluid and solid zones :Source terms

� Fluid/solid, particle, flow :Properties

� UDS unsteady, flux, diffusivity :Scalar Functions

� Zone and variable specific initialization :Initialization

� Adjust, read/write, execute_on_demand :Global Function

� Convective & radiative :Wall-heat-flux

(Alternative: profile)(Alternative: profile)

� Reaction rates, dpm, slip velocity,… :Model Specific Functions

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary2-18

Fluent User Services Center

www.fluentusers.com

Advanced FLUENT Training
UDF Mar 2007

UDF Macro-s (Types of UDF)
� Available UDF Macro-s :

� Profiles : DEFINE_PROFILE
� Source terms : DEFINE_SOURCE
� Properties : DEFINE_PROPERTY
� Scalar Functions : DEFINE_UNSTEADY

DEFINE_FLUX
DEFINE_DIFFUSIVITY

� Initialization : DEFINE_INIT
� Global Functions : DEFINE_ADJUST

DEFINE_ON_DEMAND
DEFINE_RW_FILE

� Wall-heat-flux : DEFINE_HEAT_FLUX
� Model Specific Functions : DEFINE_DPM_…

DEFINE_SR_RATE
DEFINE_VR_RATE
DEFINE_SCAT_PHASE_FUNC
DEFINE_DRIFT_DIAMETER
DEFINE_SLIP_VELOCITY

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary2-19

Fluent User Services Center

www.fluentusers.com

Advanced FLUENT Training
UDF Mar 2007

The udf.h File
� The udf-macros are defined in the‘udf.h’ file

� udf.h is a fluent header file in the~/Fluent.Inc/Fluentx.y/src/
directory

� udf.h must be included at the top in each and every udf file
� A file may contain more than one UDF
� User can use multiple files for UDF

� Any UDF you might writemust use one of the‘DEFINE_…’ macros from
this udf.h file

#define DEFINE_PROFILE(name, t, i) void name(Thread *t, int i)

#define DEFINE_PROPERTY(name,c,t) real name(cell_t c, Thread *t)

#define DEFINE_SOURCE(name, c, t, dS, i) \

real name(cell_t c, Thread *t, real dS[], int i)

#define DEFINE_INIT(name, domain) void name(Domain *domain)

#define DEFINE_ADJUST(name, domain) void name(Domai n *domain)

#define DEFINE_DIFFUSIVITY(name, c, t, i) \

real name(cell_t c, Thread *t, int i)

Part of the ‘udf.h’ file from ~/Fluent.Inc/fluentx.y/src directory

© Fluent Inc. 2/26/2008© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

Interpret / Compile
UDFs and Their
Usage

Interpret / Compile
UDFs and Their
Usage

Advanced UDF
Modeling Course

Advanced UDF
Modeling Course

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary3-2

Advanced FLUENT Training
UDF Mar 2007

How to use the UDF

� First, we need to write and save the C-source file containing the
appropriate DEFINE_MACRO routine(s).

� To use this file, the steps are:

1: Interpret Interpret / / CompileCompile the UDF

2: Start the solver (FLUENT) and read in your case/data files

3: Assign the UDFs in the BC and/or other panels for the
appropriate zones

4: Set the UDF update frequency in the Iterate panel

5: Run the calculation as usual

� Note: Values obtained from and returned to the solver by
UDFs must be in SI unitsmust be in SI units

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary3-3

Advanced FLUENT Training
UDF Mar 2007

Interpreted Vs. Compiled Code
� UDFs can be ‘interpreted’ on-the-fly using the standard ‘GUI’

� does not need a separate compiler and are architecture-independent

� It translates the C-source to assembly language

� Executes the code on line-by-line instantaneously

• performs slower than compiled UDFs

� The interpreter resides in the computer’s memory

• involves extra memory usage

� UDFs can be precompiled before invoking in FLUENT

� Needs a compiler

� It translates the C-source to machine language (object modules)

� Needs to follow a standard multi-step procedure (will be discussed later)

� Creates ‘shared libraries’ linked with the rest of the solver

ALL INTERPRETED UDF-S CAN ALSO BE COMPILED

THOUGH THE CONVERSE IS NOT TRUE

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary3-4

Advanced FLUENT Training
UDF Mar 2007

Interpreted UDFs
� Interpreter limitations:

� mixed mode arithmetic,

� structure references etc.

� cannot be linked to compiled system or user libraries

� less powerful than compiled UDFs due to limitations in
the C language supported by the interpreter

� In particular, interpreted UDFs cannot contain:

� non ANSI-C prototypes for syntax

� declarations of local structures, unions, pointers to functions,
and arrays of functions

� direct structure references

� Interpreted UDFs can indirectly access data stored in a FLUENT

structure only via a set of macro-s

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary3-5

Advanced FLUENT Training
UDF Mar 2007

Interpreting the UDF (2)

� Define �User Defined
Functions �Interpreted…

Listing appearing on Fluent windows:

w_profile:
.local.pointer thread (r0)
.local.int position (r1)

0 .local.end
0 save

.local.int f (r6)
8 push.int 0
10 save

.local.int.

.

.

.
.L1:
132 restore
133 restore
134 ret.v� Click Interpret

� The assembly language code
will scroll past window

}Skipping display here

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary3-6

Advanced FLUENT Training
UDF Mar 2007

Compiled UDF Directory Structure

ntx86ntx86

w-profile.cw-profile.c

2d2d 3d3d

makefilemakefile user_nt.udfuser_nt.udf libudf.dlllibudf.dll

makefilemakefile user_nt.udfuser_nt.udf libudf.dlllibudf.dll

srcsrc

Windows Tree

libudflibudflibudflibudf

MakefileMakefile srcsrc ultraultra

makefilemakefile

2d2d 3d3d

makefilemakefile w-profile.cw-profile.c libudf.solibudf.so

makefilemakefile w-profile.cw-profile.c libudf.solibudf.so

Unix Tree

w-profile.cw-profile.c

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary3-7

Advanced FLUENT Training
UDF Mar 2007

UDF Compilation in F6.2

� To compile UDFs from within Fluent, use:

� Define�User_Defined�Functions�Compile…

� Placing source routines in your working directory
would be sufficient and necessary

� This GUI creates the directory structure below your
working directory where you have your case and data
files

� This GUI identifies the architecture as well as the
version of fluent running and compiles only for the
appropriate UDF version (2d/2ddp/3d/3ddp/or any
parallel version)

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary3-8

Advanced FLUENT Training
UDF Mar 2007

UDF Compilation in F6.2

� Define�User_Defined Functions�Compile…

� Click on the “Add” button to browse and add source
and header files

� Click on “Build” button to compile and then “Load” to
load the library to a case file

� The compilation log appears on the Fluent console
window and in a file named log

� To unload a compiled UDF, use

Define�User_Defined Functions�Manage, select the
library, then click Unload button

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary3-9

Advanced FLUENT Training
UDF Mar 2007

Using UDFs - Example

� A non-uniform inlet velocity is to be imposed on the 2D turbine vane shown
below. The x-velocity variation is to be specified as

u(y) = 20 [1 - (y/0.067)2]

x

y

u

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary3-10

Advanced FLUENT Training
UDF Mar 2007

A Source Code Example

#include "udf.h"

DEFINE_PROFILE(velocity_profile, thread, position)
{

real x[3]; /* this will hold the position vector*/
real y;
face_t f;

begin_f_loop(f, thread)
{
F_CENTROID(x,f,thread);
y = x[1];
F_PROFILE(f, thread, position) = 20.*(1.- y*y /

(.067*.067));
}

end_f_loop(f, thread)
}

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary3-11

Advanced FLUENT Training
UDF Mar 2007

Activating the UDF

� Access the boundary condition panel

� Switch fromconstant to theUDF function in theVelocity
Magnitude dropdown list

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary3-12

Advanced FLUENT Training
UDF Mar 2007

Run the Calculation

� Run the calculation as usual

� You can change theUDF Profile Update Interval in the
Iterate panel (here it is set to 1)

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary3-13

Advanced FLUENT Training
UDF Mar 2007

Solution of Example problem

� The figure at right shows
velocity field throughout
turbine blade passage

� The bottom figure shows
the velocity plot at the inlet

� Notice the imposed
parabolic profile

© Fluent Inc. 2/26/2008© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

UDF Hooks ---

‘DEFINE’ Macros

UDF Hooks ---

‘DEFINE’ Macros

Advanced UDF
Modeling Course

Advanced UDF
Modeling Course

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary4-2

Advanced FLUENT Training
UDF Mar 2007

Boundary Profiles: DEFINE_PROFILE
� You can use this UDF to

specify

� Wall
• temperature
• heat flux, shear stress

� Inlets
• velocity
• temperature
• turbulence
• species
• scalars

� The macro begin_f_loop
loops over all faces on the
selected boundary thread

� The F_PROFILE macro
applies the value to face, f on
the thread

#include "udf.h"

DEFINE_PROFILE(w_profile, thread, position)
{

face_t f;
real b_val;

begin_f_loop(f, thread)
{

b_val = …/* your boundary value*/
F_PROFILE(f, thread, position) = b_val;

}
end_f_loop(f, thread)

}

User
specified

name

Arguments
from the

solver to
this UDF

thread : The thread of the boundary to
which the profile is attached

position : A solver internal variable
(identifies the stack location of
the profile in the data stack)

User can rename the variables at will:

DEFINE_PROFILE(my_prof, t, pos)

It’s a
must!

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary4-3

Advanced FLUENT Training
UDF Mar 2007

Example 1: Transient Inlet Velocity
� Pulsatile flow in a tube

Vx = Vo + A sin(ωt)

whereVo = 20 m/s, A = 5 m/s, ω = 10 rad/s
� Boundary condition is applied at inlet

#include "udf.h"
DEFINE_PROFILE(unsteady_v, t, pos)
{

real time, velocity;
face_t f;
begin_f_loop(f, t)

{
time = RP_Get_Real("flow-time");
velocity = 20.0 +

5.0*sin(10.*time);
F_PROFILE(f, t, pos) = velocity;

}
end_f_loop(f, t)

}

Inlet

Wall

Exit

Pipe Axis

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary4-4

Advanced FLUENT Training
UDF Mar 2007

Example 1: Results of Transient Inlet Velocity

� Time history of the average velocity at the pipe exit shows sinusoidal oscillation
with a mean of 20 and amplitude of 5.

Average
Velocity

Magnitude

Flow Time

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary4-5

Advanced FLUENT Training
UDF Mar 2007

Example 2: Fully Developed Turbulent Inlet

Inlet Channel

Expansion

� Profiles for inlet velocity, k and εεεε are
used to approximate fully developed
flow conditions

� Velocity profile follows 1/7 power law

� Turbulent kinetic energy varies linearly
from a near-wall peak to a prescribed
core-flow value

� Dissipation is prescribed by a mixing-
length model

� Used to minimize the domain size and sensitivity to inlet boundary conditions

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary4-6

Advanced FLUENT Training
UDF Mar 2007

Example 2: Results of Fully Developed
Turbulent Inlet

� Axial velocity profile changes little downstream of inlet boundary

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary4-7

Advanced FLUENT Training
UDF Mar 2007

Example 2: Results of Fully Developed Inlet

� Turbulence quantities change little downstream of the inlet

Turbulent Kinetic Energy
Dissipation RateTurbulent Kinetic Energy

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary4-8

Advanced FLUENT Training
UDF Mar 2007

Example 3: Sinusoidal Wall Temperature

� Lower wall temperature varies
sinusoidally with x-position
according to

Tx = 300 + 100 sin(π x/L)

� Inlet fluid enters at 300 K

� Upper wall is insulated
Inlet

Adiabatic Wall

Exit

Heated Wall

Temperature:Temperature: F_PROFILE(f, t, pos) = 300.+100.*sin(PI*x/0.005);

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary4-9

Advanced FLUENT Training
UDF Mar 2007

Example 3: Results of Sinusoidal Wall Temperature

� Wall (and fluid) temperature reaches peak at midlength of channel

Static Temperature (K)

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary4-10

Advanced FLUENT Training
UDF Mar 2007

Source Terms (1)

� The solvers compute source terms using the “linearized form”

S = A + B φ
where φ is the dependent variable,A is the explicit part of the
source term andBφ is the implicit part

� A recommended linearization is

whereφ is the dependent variable

� FLUENT Solver will automatically determine whether the user-
supplied source is enhancing the numerical stability (namely, the
diagonal dominance of the system matrix)

)*(
*

* φφφφφφφφφφφφ −−−−∂∂∂∂
∂∂∂∂++++==== 












 SSS

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary4-11

Advanced FLUENT Training
UDF Mar 2007

Source Terms (2)

� Source term UDFs can be created for the governing equations:
� continuity
� momentum

� k, ε
� energy
� species
� User-defined scalars

� Energy source term UDFs may also be defined for solid zones

� NOTE: The units of all source terms are expressed in terms of
the volumetric generation rate. For example, a source term
for the continuity equation would have units of (kg/s/m3)

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary4-12

Advanced FLUENT Training
UDF Mar 2007

Source Terms (3)

� Solver call this UDF for each
cell in the zone

� The solver passes the UDF the
cell pointer associated with the
cell

� The variable dS[eqn] sets up
the implicit part of the source
term for the equation the source
term is used for

� Note that the UDF returns a real
value for the explicit part of the
source, the implicit part dS[eqn]
is returned in a referenced array

include "udf.h"

DEFINE_SOURCE(cell_y_source1,
cell, thread, dS, eqn)

{

real source;

/* S = source + dS[eqn]*phi */

dS[eqn] = /* expression */

source = /* expression */

return source;
}

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary4-13

Advanced FLUENT Training
UDF Mar 2007

Source Terms (4)

� To activate source terms Define Boundary Conditions fluid-

1 and click on Source Terms

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary4-14

Advanced FLUENT Training
UDF Mar 2007

Example 4: Position Dependent Porous Media

� Channel flow with porous plug

� x-momentum loss is linear in y-position, starting from zero at lower wall

� Fluid flows preferentially near the bottom of the channel

Velocity Vectors (m/s)

Porous Plug

Inlet
Outlet

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary4-15

Advanced FLUENT Training
UDF Mar 2007

Example 5: Bubble Generated Momentum

� A column of bubbles imparts vertical momentum
inside a sparging tank.

� The rate of momentum addition is correlated to
bubble size and number density.

� This simple model can be used in place of a more
costly multiphase model. Bubble Plume

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary4-16

Advanced FLUENT Training
UDF Mar 2007

Example 5: Bubble Generated Momentum
� The rising plume of bubbles creates circulation

throughout the tank

#include "udf.h"
real bubbler_vol=0.;/*static variable*/
DEFINE_SOURCE(mom_y_src, c, t, rj, eqn)
{
#define PI 3.14159
#define GRAV 9.81
#define bub_rad 1.e-3
real bub_vel,f_d,bub_freq=5.,bubbler_ht=1.;
float bub_num, source;
cell_t cc;
rj[eqn] = 0.0;
if(bubbler_vol == 0.) /*Bubbler volume*/
{begin_c_loop(cc, t)

bubbler_vol=bubbler_vol+C_VOLUME(cc,t);
end_c_loop(cc, t)}

/* Calculate force for single bubble */
bub_vel=GRAV*pow(bub_rad,2.)*C_R(c,t)/

(3.*C_MU_L(c,t));
f_d =4.*PI*C_MU_L(c,t)*bub_rad*bub_vel;
bub_num = (bub_freq*bubbler_ht/bub_vel);
source = bub_num*f_d*100./bubbler_vol;
return source;
}

v=g*r2*ρ/(3*µ)
Drag=4*π*µ*r*v
N = f*h/v
Source=N*Drag*100/Volume

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary4-17

Advanced FLUENT Training
UDF Mar 2007

Initialization and Example 6

� Initializes solutions for entire
domain, similar to “patching” of
values

� Executed once at the beginning of
solution process

� Initializatio Function appears under
Define ���� User_Defined ����

Function_hooks…

#include "udf.h"
DEFINE_INIT (my_init_function,domain)
{

cell_t c;
Thread *thread;
real xc[ND_ND];
thread_loop_c (thread,domain)

{
begin_c_loop (c,thread)

{
C_CENTROID(xc,c,thread);

if (sqrt(ND_SUM(pow(xc[0]-0.5,2.),
pow(xc[1] - 0.5,2.),
pow(xc[2] - 0.5,2.))) < 0.25)

C_T(c,thread) = 400.;
else

C_T(c,thread) = 300.;
}

end_c_loop (c,thread)
}

}

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary4-18

Advanced FLUENT Training
UDF Mar 2007

Adjust Function and Example 7

� Function called for every
iteration

� Integrate the turbulent
dissipation over the whole
domain and print it to the text
user interface

� Adjust Function appears under
Define ����User_Defined ����

Function_hooks…

DEFINE_ADJUST(my_adjust, domain)
{
/* Integrate dissipation. */

real sum_diss=0.;
Thread *t;
cell_t c;
thread_loop_c (t,domain)
{

begin_c_loop (c,t)
sum_diss += C_D(c,t)* C_VOLUME(c,t);
end_c_loop (c,t)

}
Message(“Volume integral of turbulent

dissipation : %g\n”,sum_diss);
}

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary4-19

Advanced FLUENT Training
UDF Mar 2007

Execute_at_End Function and Example 8
� This is a general purpose macro

executed at the end of
� an iteration in a steady state run, or

� at the end of a time step in a
transient run.

� UDF for integrating turbulent
dissipation and printing it to
console window at the end of the
current iteration or time step

� This Function appears under
Define ����User_Defined ����

Function_hooks…

#include "udf.h"
DEFINE_EXECUTE_AT_END(execute_at_end)
{ Domain *d; Thread *t;

real sum_diss=0.;
cell_t c;
d = Get_Domain(1);
thread_loop_c (t,d)
{ if (FLUID_THREAD_P(t))

{ begin_c_loop (c,t)
sum_diss+=C_D(c,t)*C_VOLUME(c,t);

end_c_loop (c,t)
}

}
printf("Volume integral of turbulent

dissipation: %g\n", sum_diss);
fflush(stdout); }

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary4-20

Advanced FLUENT Training
UDF Mar 2007

User Defined I/O

� Ability to read/write custom data in
case/data files

� Can save and restore custom
variables of any data types (e.g.,
integer, real, Boolean, structure)

� Useful to save “dynamic”
information (e.g., number of
occurrences in conditional
sampling)

� Defined using DEFINE_RW_FILE

macro

� Selected in the User-Defined
Function Hooks panel

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary4-21

Advanced FLUENT Training
UDF Mar 2007

User Defined I/O (2)

#include "udf.h"
int count = 0; /* define and initialize static var iable

count */
DEFINE_ADJUST(it_count, domain)
{

count++;
printf("count = %d\n",count);

}
DEFINE_RW_FILE(writer, fp)
{

printf("Writing UDF data to data file...\n");
fprintf(fp, "%d",count); /* write out count to data
file */

}
DEFINE_RW_FILE(reader, fp)
{

printf("Reading UDF data from data file...\n");
fscanf(fp, "%d",&count); /* read count from data fi le
*/

}

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary4-22

Advanced FLUENT Training
UDF Mar 2007

Properties and Example 9

� UDF’s can be used to define
� Viscosity

� Thermal Conductivity

� Mass Diffusivity

� Density

� UDF’s cannot be used to
define specific heat

� The function is called for
every cell in the zone

#include "udf.h"

DEFINE_PROPERTY(user_vis, cell, thread)

{

real temp, mu_lam;
temp = C_T(cell, thread);

{

if (temp > 288.)

mu_lam = 5.5e-3;

else if (temp >= 286.&& temp<=288.)

mu_lam = 143.2135 - 0.49725 * temp;

else
mu_lam = 1.0;

}

return mu_lam;

}

286KT

K 288T286K

288KT

1

T0.49725-143.2

105.5 3

<
≤≤

>









=

−

µ

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary4-23

Advanced FLUENT Training
UDF Mar 2007

Properties (2)

� To activate the UDF, select
user-defined from the
property drop down list

� When you select the user-
defined option, a panel will
appear with the names of
your UDF’s

� Select the name of the
appropriate UDF

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary4-24

Advanced FLUENT Training
UDF Mar 2007

Example 10: Temperature Dependent Viscosity

� Warm fluid enters the channel flowing from left to right.

� Viscosity increases as the fluid is cooled by contact with the cold
upper wall.
#include "udf.h"
DEFINE_PROPERTY(user_vis, cell, thread)
{real temp, mu_lam;
temp = C_T(cell, thread);
{/* Limit viscosity for high temperature */
if (temp > 288.) mu_lam = 5.5e-3;
/* Otherwise, use a profile for viscosity */
else if (temp >= 286. && temp <= 288.)
mu_lam = 143.2135-0.49725*temp;
else
mu_lam = 1.0;
}
return mu_lam;
}

Contours of molecular viscosity (kg/ms)

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary4-25

Advanced FLUENT Training
UDF Mar 2007

Time Step: DEFINE_DELTAT

� In Fluent, you may use adaptive
timesteping based on minimum and
maximum values of timesteps as well
as other parameters

� Adaptive timestepping is activated by
selecting the corresponding radio-
button in the Solve-Iterate
panel for unsteady problems

� DEFINE_DELTATlets the user
control the timestep based on any
custom logic/algorithm

#include "udf.h"
DEFINE_DELTAT(mydeltat, domain)
{
real time_step;
real flow_time =

RP_Get_Real("flow-time");
if (flow_time < 0.5)

time_step = 0.1;
else

time_step = 0.2;
return time_step;
}

mydeltat

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary4-26

Advanced FLUENT Training
UDF Mar 2007

Turbulent Viscosity: DEFINE_TURBULENT_VISCOSITY

� Any custom relation for the
turbulent viscosity
formulation can be adopted
using this UDF hook

� The variable names for the
constants in the standard k-ε
model are:
� C1 : M_keC1

� C2 : M_keC2

� Cµ : M_keCmu

� σk : M_keigk

� σε : M_keige

� σε : M_keprt

DEFINE_TURBULENT_VISCOSITY(my_mut,cell,thread)

{
real mu_t;
real rho = C_R(cell,thread);
real k=C_K(cell,thread);
real epsilon=C_D(cell,thread);
mut= M_keCmu*rho*SQR(k)/epsilon;
return mut;

}
2

t

k
Cµµ ρ

ε
=

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary4-27

Advanced FLUENT Training
UDF Mar 2007

Radiation Reflectivity: Discrete Ordinate Model Only

� Diffused Reflectivity
� Modify the interfacial reflectivity at diffusely reflecting semi-transparent walls,

based on the refractive index
� This function is called for each semi-transparent wall and each band (non-gray

DO Model)
� The function can be used to modify interface values of diffuse reflectivity and

diffuse transmissivity
� In this example, reflectivity values are not

customized: they are just printed

#include "udf.h"
DEFINE_DOM_DIFFUSE_REFLECTIVITY
(user_dom_diff_refl, t, nband,

n_a, n_b, diff_ref_a, diff_tran_a,
diff_ref_b, diff_tran_b)

{
printf("diff_ref_a=%f diff_tran_a=%f\n",

*diff_ref_a, *diff_tran_a);
printf("diff_ref_b=%f diff_tran_b=%f \n",

*diff_ref_b, *diff_tran_b);
}

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary4-28

Advanced FLUENT Training
UDF Mar 2007

Radiation Reflectivity: Discrete Ordinate Model (2)

� Specular Reflectivity
� Modify the specularreflectivity and transmitivity at semi-transparent walls,

along direction s at a face (f)

� The same UDF is called for all the faces of the semi-transparent wall, for each of
the directions

#include "udf.h"
DEFINE_DOM_SPECULAR_REFLECTIVITY

(user_dom_spec_refl, f, t, nband, n_a,
n_b,

ray_direction, en,
internal_reflection,

specular_reflectivity,
specular_transmissivity)
{ real angle, cos_theta;

real PI = 3.141592;
cos_theta = NV_DOT(ray_direction, en);
angle = acos(cos_theta);
if (angle >45 && angle < 60)

{ *specular_reflectivity = 0.3;
*specular_transmissivity = 0.7;

} }

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary4-29

Advanced FLUENT Training
UDF Mar 2007

Emission & Scattering: Discrete Ordinate Source Macro

� Can be used to modify the emission and scattering terms in the radiative
transport equation

#include "udf.h"
DEFINE_DOM_SOURCE(user_dom_source,
c, t, ni, nb, emission,
in_scattering, abs_coeff,
scat_coeff)
{

*emission *= 1.05;
}

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary4-30

Advanced FLUENT Training
UDF Mar 2007

Scattering Phase Function: Discrete Ordinate Model

� Define the radiation scattering phase function for the Discrete Ordinates
(DO) model

� The function computes two values: the fraction of radiation energy
scattered from direction iiii to direction jjjj, and the forward scattering factor

� Look at the UDF manual for a complete listing of the UDF for
backward and forward scttering phase functions after Jendoubi et al J.
Thermophys. Heat Transfer, 7(2):213-219, 1993

� This function is loaded as user-defined
scattering coefficient in the materials
panel

#include "udf.h"
DEFINE_SCAT_PHASE_FUNC(Scat_Phi_B2,c,fsf)
{

real phi=0;
*fsf = 0;
phi = 1.0 - 1.2*c + 0.25*(3*c*c-1);
return (phi);

}

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary4-31

Advanced FLUENT Training
UDF Mar 2007

Additional Macros
� There are a number of additional model specific macros

� You can learn more about these from the UDF manual section
4.3

DEFINE_CHEM_STEP(name, ifail, n, dt, p, temp, yk)
DEFINE_NET_REACTION_RATE(name, p, temp, yi, rr, ja c)

DEFINE_NOX_RATE (name, c, t, NOx)

DEFINE_PRANDTL_D (name, c, t)
DEFINE_PR_RATE (name, c, t, r, mw, ci, p, sf,

dif_index, cat_index, rr)
DEFINE_SR_RATE (name, f, t, r, my, yi, rr)

DEFINE_VR_RATE (name, c, t, r, mw, yi, rr, rr_t)
DEFINE_TURB_PREMIX_SOURCE (name, c, t, turb_flame_ speed,

source)

� Multiphase specific macros will be discussed later

© Fluent Inc. 2/26/2008© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

User Defined Scalars

and Memories

User Defined Scalars

and Memories

Advanced UDF
Modeling Course

Advanced UDF
Modeling Course

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary5-2

Advanced FLUENT Training
UDF Mar 2007

User Defined Scalars (1)

� FLUENT can solve generic transport
equations for User Defined Scalars

� The menu is accessed through
Define ����Models ����User-Defined
Scalars…

� User specifies number of User- Defined
Scalars and UDF can be used for parts of
scalar transport equation :
� Advective: DEFINE_UDS_FLUX

� Unsteady: DEFINE_UDS_UNSTEADY

� Diffusivity: DEFINE_DIFFUSIVITY

() S
x

D
x

u
xt jj

j

j

+














∂
∂

∂
∂=

∂
∂+

∂
∂ φφρρφ)(

() S
x

D
x

u
xt jj

j

j

+














∂
∂

∂
∂=

∂
∂+

∂
∂ φφαραρφ)(

Scalars are phase-specific
in multiphase models
Will be discussed later

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary5-3

Advanced FLUENT Training
UDF Mar 2007

User Defined Scalars (2)
� User Defined Scalar convective and

time derivatives can be modified
DEFINE_UDS_UNSTEADY(uns_time, cell,

thread, i, apu, su)
{

real physical_dt, vol, rho, phi_old;
physical_dt = RP_Get_Real("physical-

time-step");
vol = C_VOLUME(cell,thread);

rho = Rhod;
*apu = -rho*vol /

physical_dt;/*implicit part*/
phi_old =

C_STORAGE_R(cell,thread,SV_UDSI_M1(
i));

*su =
rho*vol*phi_old/physical_dt;/*expli
cit part*/

}

DEFINE_UDS_FLUX(flux, f, t, i)

{

if (i == 0) return 0.;

if NNULLP(THREAD_STORAGE(t,SV_FLUX))

return F_FLUX(f,t);

return 0.;

}

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary5-4

Advanced FLUENT Training
UDF Mar 2007

User Defined Scalars (3)

� The Boundary Conditions for
the User Defined Scalar can be
specified asSpecified Flux

or Specified Value

� The diffusivity for the User
Defined Scalar can be specified
throughMaterial ����user-

defined ����diffusivity panel
as a constant or as
User-Defined Function

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary5-5

Advanced FLUENT Training
UDF Mar 2007

User Defined Scalars (4)
� The User Defined Scalars

and their gradients can be
used in UDF’s

DEFINE_ADJUST(adjust_fcn,domain)

{

Thread *t;

int nt;
cell_t c;

face_t f;

int ns;

real p_dis = 0.;
/* Do nothing if gradient isn't allocated yet. */

if (! Data_Valid_P())return;

/* Compute power dissipated. */

thread_loop_c (t, domain)

if (FLUID_THREAD_P(t))

{

begin_c_loop_all (c,t)

{

C_UDSI(c,t,1) +=
K_EL*NV_MAG2(C_UDSI_G(c,t,0))*C_VOLUME(c,t);

}

end_c_loop_all (c, t)

}

}

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary5-6

Advanced FLUENT Training
UDF Mar 2007

User Defined Memory (UDM)
� User-allocated memory

� Allow users to allocate memory (up to 500
locations) to store and retrieve the values of
field variablesfield variables computed by UDF’s (for
postprocessing and use by other UDFs)

� Same array dimension and size as any flow
variable

� UDMs are not solved by the solver

� Number of User-Defined Memory
Locations is specified in the User-Defined
Memory panel

� Accessible via macros
• Cell values: C_UDMI(c,t,i)
• Face values: F_UDMI(f,t,i)

� Saved to FLUENT data file

500

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary5-7

Advanced FLUENT Training
UDF Mar 2007

User Defined Memory (2)

DEFINE_ON_DEMAND(scaled_temp)

{

Domain *domain = Get_domain(1);

/* Compute scaled temperature store in user-defined
memory */

thread_loop_c(t,domain)

{

begin_c_loop(c,t)

{

temp = C_T(c,t);
C_UDMI(c,t,0)=(temp - tmin)/(tmax-tmin);

}

end_c_loop(c,t)

}

}

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary5-8

Advanced FLUENT Training
UDF Mar 2007

Execute on Demand

� This provides a hook to execute
any set of calculation or I/O
operations at will of the user while
the solver is not iterating

� Executed instantaneously when
activated by user

� Define�User-Defined
�Execute on Demand...

extern Domain *domain;

#define SETMIN(a,b)((b)<(a)?(a=b):(a))

#define SETMAX(a,b)((b)>(a)?(a=b):(a))

DEFINE_ON_DEMAND(scaled_temp)

{

thread_loop_c(t,domain)

{

real tmin=-1.e10, tmax=1.e10;

/* Compute min & max temperature */

begin_c_loop(c,t)

{

SETMIN(tmin,C_T(c,t));

SETMAX(tmax,C_T(c,t));

}

end_c_loop(c,t)

}

}

© Fluent Inc. 2/26/2008© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

User Defined Function

for

Discrete Phase Model

User Defined Function

for

Discrete Phase Model

Advanced UDF
Modeling Course

Advanced UDF
Modeling Course

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary6-2

Advanced FLUENT Training
UDF Mar 2007

DPM Macros (1)

� Tracked_particle *p DPM Datatype

� DPM tracks particles in Lagrangian frame

� Particle data at current position

� P_DIAM(p) Particle diameter

� P_VEL(p)[I] Particle Velocity

� P_T(p) Particle Temperature

� P_RHO(p) Particle density

� P_MASS(p) Particle mass

� P_TIME(p) Current time for particle

� P_DT(p) Particle time step

� P_LF(p) Particle liquid fraction

� P_VFF(p) Particle volatile fraction

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary6-3

Advanced FLUENT Training
UDF Mar 2007

DPM Macros (2)
� Values of particle properties at entry to current cell

� P_DIAM0(p) Diameter

� P_VEL0(p)[i] Velocity

� P_TO(p) Temperature

� P_RHO0(p) Density

� P_MASS0(p) Mass

� P_TIME0(p) Time

� P_LF0(p) Liquid fraction

� Values of particle properties at injection into domain

� P_INIT_DIAM(p) Diameter

� P_INIT_MASS(p) Mass

� P_INIT_RHO(p) Density

� P_INIT_TEMP(p) Temperature

� P_INIT_LF(p) Liquid fraction

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary6-4

Advanced FLUENT Training
UDF Mar 2007

DPM Macros (3)

� P_EVAP_SPECIES_INDEX(p) Evaporating species index in mixture
� P_DEVOL_SPECIES_INDEX(p) Devolatilizing species index in mixture

� P_OXID_SPECIES_INDEX(p) Oxidizing species index in mixture

� P_PROD_SPECIES_INDEX(p) Combustion product species index in mixture

� P_CURRENT_LAW(p) Current law index

� P_NEXT_LAW(p) Next particle law index

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary6-5

Advanced FLUENT Training
UDF Mar 2007

DPM Macros (4)
� Material Properties for particles

� P_MATERIAL(p) Material pointer for particles

� DPM_SWELLING_COEFFI(p) Swell coefficient for devolatilization
� DPM_EMISSIVITY(p) Particle radiation emissivity

� DPM_SCATT_FACTOR(p) Particle radiation scattering factor

� DPM_EVAPORATION_TEMPERATURE(p)Evaporation temperature

� DPM_BOILING_TEMPERATURE(p) Boiling temperature
� DPM_LATENT_HEAT(p) Latent Heat

� DPM_HEAT_OF_PYROLYSIS(p) Heat of pyrolysis

� DPM_HEAT_OF_REACTION(p) Heat of reaction

� DPM_VOLATILE_FRACTION(p) Volatile fraction

� DPM_CHAR_REACTION(p) Char fraction

� DPM_SPECIFIC_HEAT(p, t) Specific Heat at temperature t

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary6-6

Advanced FLUENT Training
UDF Mar 2007

DPM Functions (1)

� The following functions can be modeled:

� Body force - custom body forces on the particles

� Drag - user defined drag coefficient between
particles and fluid

� Source Terms - access particle source terms

� Output - user can modify what is written out to the
sampling plane output

� Erosion - called when particle encounters
“reflecting” surface

� DPM Law - custom laws for particles

� Scalar Update - allows users to update a scalar every
time a particle position is updated

� Switch - change the criteria for switching between laws

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary6-7

Advanced FLUENT Training
UDF Mar 2007

DPM Functions (2)

� DEFINE_DPM_BODY_FORCE Body force
� DEFINE_DPM_DRAG Drag
� DEFINE_DPM_SOURCE Source terms
� DEFINE_OUTPUT Output
� DEFINE_DPM_LAW Custom law
� DEFINE_DPM_EROSION Erosion
� DEFINE_DPM_INJECTION_INIT Initialize injections
� DEFINE_DPM_SCALAR_UPDATE Update scalars
� DEFINE_DPM_SWITCH Switch laws

* Note: the arguments to these functions are described in the UDF
manual posted in http://www.fluentusers.com/fluent6/doc/ori/html/udf/main_pre.htm

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary6-8

Advanced FLUENT Training
UDF Mar 2007

DPM Functions (3)
� The function shown models a custom law
� The parameter p is a pointer to data structure of type Tracked Particle

#include "udf.h"

#include "dpm.h"

DEFINE_DPM_LAW(Evapor_Swelling_Law, p, ci)

{

real swelling_coeff = 1.1;

/* first, call standard evaporation routine to calc ulate mass and
heat transfer */

Vaporization_Law(p);

/* compute new particle diameter and density */

P_DIAM(p) = P_INIT_DIAM(p)*(1. + (swelling_coeff - 1 .)*

(P_INIT_MASS(p) P_MASS(p))/

(DPM_VOLATILE_FRACTION(p)*P_INIT_MASS(p)));

P_RHO(p) = P_MASS(p) / (3.14159*P_DIAM(p)

*P_DIAM(p)*P_DIAM(p)/6);

P_RHO(p) = MAX(0.1, MIN(1e5, P_RHO(p)));

}

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary6-9

Advanced FLUENT Training
UDF Mar 2007

DPM Functions (4)

� The law is activated through
Define ����Models ����Dispersed
Phase����Injections…Create

� The Set Injections Properties
panel comes up where Custom is
activated under Laws

� This brings up the Custom Laws
panel where the user can specify
the appropriate law

© Fluent Inc. 2/26/2008© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

UDFs for
Multiphase Flows
UDFs for
Multiphase Flows

Advanced UDF
Modeling Course

Advanced UDF
Modeling Course

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary7-2

Advanced FLUENT Training
UDF Mar 2007

Recap: Single Phase Data Structure

Corresponding
Data structure

Wall

Porous
Medium

Fluid-1

Solid-1

Solid-2

Outlet

Wall

Fluid-2
Inlet

Domain
of

Analysis

Inlet
Fluid-2

Fluid-1

Solid-1

Outlet
Porous
Medium

Solid-2Wall

DomainDomain

Threads Threads

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary7-3

Advanced FLUENT Training
UDF Mar 2007

Data Structure for Multiphase Models
� Data Structure in multiphase models involve multiple domains:

� Super Domain: This is the top-level domain contains all phase-independent and
mixture data: geometry, connectivity, property

� Sub-domains (phase domains): Each phase has a sub-domain that inherits the
mixture-specific data and maintains the phase-specific data

� Interaction Domain: To activate the phase interaction mechanisms

Sub-Domains

Threads

InletFluid-2

Fluid-1

Solid-1

Outlet

Porous
Medium

Solid-2Wall

Threads

InletFluid-2

Fluid-1

Solid-1

Outlet
Porous
Medium

Solid-2Wall

Threads

InletFluid-2

Fluid-1

Solid-1

Outlet

Porous
Medium

Solid-2Wall

Interaction Domain

InletFluid-2

Fluid-1

Solid-1

Outlet
Porous
Medium

Solid-2Wall

Super
Domain

Threads

Primary Phase
Domain

Secondary Phase
Domains

Sub-Threads

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary7-4

Advanced FLUENT Training
UDF Mar 2007

The Threads in Multi-Domains

� The mixture:
� In single-phase, a mixture represents the sum over all the species
� In multiphase it represents the sum over all the phases

� This distinction is important
� Also, the code will later be extended to multiphase multi-component

fluids (where, for example, a phase could be a mixture of species)

� Thread data structures:
� Threads must be associated with the super domain and all sub-domains

• For each cell (or face) thread of the super domain, there is a corresponding
cell (or face) thread for each sub-domain

• Some of the information defined in one thread of the super domain is shared
with the corresponding threads of each of the sub-domains

• Threads associated with the super domain are referred to as super-threads
• Threads associated with the subdomain are referred to as phase-level threads

or sub-threads

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary7-5

Advanced FLUENT Training
UDF Mar 2007

The Domain-Ids and The Thread-Ids

� For multiphase models, the domains need to be
identified by unique Ids (including Interaction domain)

� Domain_ID of the super (mixture) domain is always ‘1’

� Domain_ID s are not necessarily orderedsequentially

� Therefore, to access the phase domains, each phase
also has a phase_domain_index :

� ‘0’ for the primary phase

� ‘N-1’ for the last secondary phase

� phase_domain_index is used in UDFs to retrieve phase thread pointers

• Useful when you want to access data for another phase from an UDF for a
particular phase

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary7-6

Advanced FLUENT Training
UDF Mar 2007

Domain Looping Macro
� sub_domain_loop(subdomain, mixture_domain, phase_in dex)

� Loops over all phases (sub-domains) in a mixture
� mixture_domain is already available
� subdomain , phase_index are defined locally, initialized within the macro

� An Example for the loop,Domain_ID and thephase_domain_index :

DEFINE_ADJUST(print_id, mix_domain)
{

Domain *s_d; /*subdomain pointer, locally defined*/
int p_d; /* loop counter for phase_domain_index, locally def ined*/
int p_d_id; /* mix_domain is available*/
sub_domain_loop(s_d, mix_domain, p_d)

{
p_d_id = DOMAIN_ID(s_d);
Message("the phase domain id = %d and the phase

domain index = %d\n", p_d_id, p_d);
}

}

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary7-7

Advanced FLUENT Training
UDF Mar 2007

Thread Looping Macro
� sub_thread_loop(subthread,mixture_thread,phase_inde x)

� Loops over all threads in a mixture
� mixture_thread is already available
� subthread & phase_index are defined locally, initialized within the macro

An Example:
/*compute bulk density of mixture and store it in a UDM*/

DEFINE_ADJUST(calc_den, mix_domain)

{ Thread *mix_thread;

thread_loop_c(mix_thread,mix_domain)

{ cell_t c;

begin_c_loop(c,mix_thread)

{ Thread *s_t;

int p_d_i;

C_UDMI(c,mix_thread,0) = 0.;

sub_thread_loop (s_t, mix_thread, p_d_i)

C_UDMI(c,mix_thread,0) += C_VOF(c,s_t)*C_R(c,s_t);

end_c_loop(c,mix_thread)

}}}

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary7-8

Advanced FLUENT Training
UDF Mar 2007

Other Looping Macros
� mp_thread_loop_c(cell_thread, mixture_domain, pt)

� cell_thread is a pointer to mixture thread in themixture_domain

� mixture_domain is already assumed to be available

� pt is an array of thread pointers

� mp_thread_loop_f(face_threads, mixture_domain, pt)

� face_threads is a pointer to face thread in themixture_domain

� mixture_domain is already assumed to be available

� pt is an array of thread pointers pointing to the phase-level threads

An Example:
DEFINE_ADJUST(print_vof, mix_domain)
{ Thread *mix_thread;

Thread **pt;
mp_thread_loop_c (mix_thread, mix_domain, pt)
{cell_t c;
begin_c_loop(c, mix_thread)

Message(“cell volume fraction = %f\n”,C_VOF(c,pt[0]));
end_c_loop(c, mix_thread)}}

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary7-9

Advanced FLUENT Training
UDF Mar 2007

Access the Right Thread / Domain

� While writing UDF’s, it is important that the right thread / domain is accessed

� C_R(cell,thread) will return
• The mixture density ifthread is the mixture threador

• The phase densities if it is thephase thread

� In general the type of ‘DEFINE’ macro determines which thread or domain
(mixture or phase) gets passed to your UDF

� DEFINE_INIT and DEFINE_ADJUSTfunctions always get passed
the domain structure associated with the super domain

� DEFINE_ON_DEMANDfunctions are not passed any domain structures

� If your UDF is not explicitly passed the pointer to the thread or domain
required, then you can use a multiphase-specific utility macro to retrieve it

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary7-10

Advanced FLUENT Training
UDF Mar 2007

Superthreads and Phasethreads
� Each Thread is also in a hierarchy that matches that of the domains
� The “superthreads” are where the “mixture” of the phases is stored and

so are often called the “mixture threads”
� Shared values such as the cell’s geometry data are stored in the

superthread
� Each Phase has its own set of threads known as a “subthreads” or

“phase threads”

superthreads

P1threadsP0threads P2threads

Phase Thread Interactions

Phase Subthreads

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary7-11

Advanced FLUENT Training
UDF Mar 2007

Access Variables External to a UDF
� Get_Domain(Domain-ID)

� Usage: Domain *domain=Get_Domain(n);

‘n’ is theDomain-ID , as appear in Define-Phase GUI. It is always ‘1’ for
the mixture domain

� DOMAIN_ID(domain)

� Usage: int domain_id = Domain_ID(subdomain);

‘subdomain ’ is the pointer to a phase-level domain; domain_id upon
return is the same integer ID displayed in the GUI under Define-Phases
panel

� DOMAIN_SUB_DOMAIN(mixture_domain,ph_domain_index)

� Usage: Domain *mixture_domain;
Domain *subdomain = DOMAIN_SUB_DOMAIN

(mixture_domain, phase_domain_index);
returns the phase pointer subdomain for thephase_domain_index

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary7-12

Advanced FLUENT Training
UDF Mar 2007

Access Variables External to a UDF (2)
� THREAD_SUB_THREAD(mixture_thread,ph_domain_index)

� Usage:
int ph_d_index = 0; /* primary phase index is 0 */
Thread *mix_th; /* mixture-level thread pointer */
Thread *subth=THREAD_SUB_THREAD(mix_th, ph_d_index) ;

returns the phase-level thread pointer for the given ph_d_index

� THREAD_SUB_THREADS(mixture_thread)

� Usage:
Thread *mixture_thread;
Thread **pt; /* initialize pt: pointer array */
pt = THREAD_SUB_THREADS(mixture_thread)

returns the pointer array,pt , whose elements contain pointers to phase-level
threads (subthreads)

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary7-13

Advanced FLUENT Training
UDF Mar 2007

Access Variables External to a UDF (3)

� THREAD_SUPER_THREAD(subthread)

� Usage:
Thread *subthread; /*pointer to a phase thread within the mixture*/

Thread *mix_thread=THREAD_SUPER_THREAD(subthread)

Given a phase thread pointer, it returns the super-thread (mixture-thread) pointer

� DOMAIN_SUPER_DOMAIN(subdomain)

� Usage:
Domain *subdomain; /*pointer to a phase domain within the mixture*/

Domain *mixture_domain = DOMAIN_SUPER_DOMAIN(subdom ain)

It returns the mixture domain pointer

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary7-14

Advanced FLUENT Training
UDF Mar 2007

Access Variables External to a UDF (4)
� PHASE_DOMAIN_INDEX(subdomain)

� Usage:
Domain *subdomain; /*points to a phase domain within the mixture*/

int phase_domain_index = PHASE_DOMAIN_INDEX(subdoma in)

returns the phase domain index for the phase domain (subdomain) pointer;
It is an integer that starts with ‘0’ for the primary phase and is incremented
by one for each secondary phase

� THREAD_DOMAIN(thread)
� Usage:

Thread *subthread; /*points to a phase thread within the mixture*/

Thread *mix_thread=THREAD_SUPER_THREAD(subthread)
Domain *subd=THREAD_DOMAIN(subthread); /*points to a phase domain*/
Domain *mixd=THREAD_DOMAIN(subthread); /*points to mixture domain*/

returns domain pointer for thethread

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary7-15

Advanced FLUENT Training
UDF Mar 2007

Exchange Macros(1)

� DEFINE_EXCHANGE_PROPERTY
(name, c, mixture_thread,

second_column_phase_index,
first_column_phase_index)

� This macro is used to specify custom drag &
lift coefficients for the Eulerian multiphase model

� mixture_thread points to the mixture thread

� c is the index of a cell on themixture_thread

� first_column_phase_index andsecond_column_phase_index are
integer identifiers corresponding to the pair of phases in your multiphase flow

� The identifiers correspond to the phases that are selected in the
Phase-Interaction panel in the GUI

� The UDF returns the real value of the lift or drag coefficient

First
Column

Second
Column

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary7-16

Advanced FLUENT Training
UDF Mar 2007

Exchange Macros(2)

� DEFINE_VECTOR_EXCHANGE_PROPERTY(name, c,mixture_thr ead,
second_column_phase_index,first_column_phase_index,
vector_result)

� This macro is used to specify custom slip velocities for multiphase Mixture model

� mixture_thread points to the mixture thread

� c is the index of a cell on themixture_thread

� first_column_phase_index andsecond_column_phase_index are
integer identifiers corresponding to the pair of phases in your multiphase flow

� The identifiers correspond to the phases that are selected in the
Phase-Interaction panel in the GUI

� The UDF is passed the real pointer to the slip velocity vectorvector_result ,
and it will need to set the components of the slip velocity vector

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary7-17

Advanced FLUENT Training
UDF Mar 2007

Exchange Macros(3)
An Example :

#include "udf.h”

#include "sg_mphase.h"

DEFINE_VECTOR_EXCHANGE_PROPERTY(custom_slip, c, mix ture_thread,
second_column_phase_index, first_column_phase_index , vector_result)
{ real grav[2] = {0., -9.81};

real K = 5.e4;
real pgrad_x, pgrad_y;

Thread *pt, *st;/* thread pointers for primary & se condary phases*/

pt = THREAD_SUB_THREAD(mixture_thread, second_colum n_phase_index);
st = THREAD_SUB_THREAD(mixture_thread, first_column_ phase_index);

/* Now the threads are known for primary (0) & seco ndary(1) phases */

pgrad_x = C_DP(c, mixture_thread)[0];

pgrad_y = C_DP(c, mixture_thread)[1];

vector_result[0] = -(pgrad_x/K)+(((C_R(c,st)-C_R(c, pt))/K)*grav[0]);

vector_result[1] = -(pgrad_y/K)+(((C_R(c,st)-C_R(c, pt))/K)*grav[1]);

}

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary7-18

Advanced FLUENT Training
UDF Mar 2007

Cavitation Macros
� DEFINE_CAVITATION_RATE (name,c,t,p,rhoV,rhoL,vofV,

p_v,n_b,mdot)

� You can use this macro to model the creation of vapor due to pressure tension in a
multiphase flow
� It is applied in theUser-Defined-Function-Hooks →Cavitation-

Mass-Rate-Function panel

� t is a pointer to the mixture-level thread

� c is the index of a cell on the thread pointed to byt

� The remaining arguments are real pointers to the following data:
• Shared pressure (p), vapor density(rhoV), liquid density(rhoL), vapor volume

fraction (vofV), vaporization pressure(p_v), number of bubbles per unit volume
(n_b), and rate of vapor formation(mdot)

� The UDF sets the value referenced by the real pointer mdot , to the cavitation rate

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary7-19

Advanced FLUENT Training
UDF Mar 2007

Miscellaneous: Multiphase Macros

� Phase diameter
� C_PHASE_DIAMETER(c,phase_thread)

� Phase Volume-fraction
� C_VOF(c,phase_thread)

� Phase velocity gradients
� C_U_G(c, phase_thread)

� C_V_G(c, phase_thread)

� C_W_G(c, phase_thread)

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary7-20

Advanced FLUENT Training
UDF Mar 2007

Miscellaneous : Multiphase Macros
� Phase volume fraction gradients:C_VOF_G(c,phase_thread)

� Memory needs to be allocated and gradients need to be explicitly calculated

Domain *pDomain = DOMAIN_SUB_DOMAIN(domain,P_PHAS E);

Alloc_Storage_Vars (pDomain,SV_VOF_RG,SV_VOF_G,SV _NULL);

Scalar_Reconstruction(pDomain,SV_VOF,-1,SV_VOF_RG, NULL);

Scalar_Derivatives (pDomain,SV_VOF,-1,SV_VOF_G,SV _VOF_RG,

Vof_Deriv_Accumulate);

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary7-21

Advanced FLUENT Training
UDF Mar 2007

Miscellaneous: Multiphase Macros

� Check if a given thread is a “super” or “sub” thread

THREAD_SUPER_THREAD(thread) is NULL for mixture thread,

and notNULL for phase threads

� mixture : if (NULLP (THREAD_SUPER_THREAD(thread)))

� phase : if (!NULLP (THREAD_SUPER_THREAD(thread)))

© Fluent Inc. 2/26/2008© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

UDF in Parallel

FLUENT

UDF in Parallel

FLUENT

Advanced UDF
Modeling Course

Advanced UDF
Modeling Course

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary8-2

Advanced FLUENT Training
UDF Mar 2007

Parallel Fluent

Print messages

“(%iterate 5)”

P
rin

t m
e

ss
ag

e
s

“(
%

ite
ra

te
5)

”

Cortex Host

Compute-Node-0

Compute-Node-1

Compute-Node-2

Compute-Node-3

“(
%

ite
ra

te
5)

”

“(%
ite

ra
te

 5
)”

“ (%
iterate 5)”

Pr
in

t m
es

sa
ge

s

Print m
essages

� Compute nodes labeled consecutively
starting at 0

� Host labeled 999999
� Host connected to Cortex
� Each compute node (virtually)

connected to every other compute node

“(
%

ite
ra

te
5)

”
“(

%
ite

ra
te

5)
”

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary8-3

Advanced FLUENT Training
UDF Mar 2007

fluent6.x Directory

Parallel Fluent Directories

2d

fluent-version

src

fluent6.x

lib Architecture

2d_node

fluent_netnet -version
fluent_smpismpi-version
fluent_vmpivmpi-version
fluent_pvmpvm -version

2d_host

fluent-version

*.h
makefiles

e.g. ultra,
hpux11, alpha,

ntx86...

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary8-4

Advanced FLUENT Training
UDF Mar 2007

Intro to Compiler Directives

� “#if ” is a compiler directive (similar to “#define ”)
� A “#endif ” is used to close a “#if

#if RP_NODE /* Compute-Node */

#if RP_HOST /* Host */

#if PARALLEL /* Equivalent to #if RP_HOST||RP_NODE* /

#if !PARALLEL /* Serial */
#if RP_HOST

Message(“I’m the Host process \n”);
#endif
#if RP_NODE

Message(“I’m the Node process number:%d \n”, myid);
#endif

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary8-5

Advanced FLUENT Training
UDF Mar 2007

Partitioning (1)
� Domain Decomposition Technique: Splits the domain across Compute

Nodes
� Because Fluent’s algorithms expect a cell to be on both sides of an

interior face, copies of the neighboring partition’s cells are kept on each
Node

� Compute Node 0 has copies of the cells on the other side of all partition
faces and Compute Node 1 has corresponding cell copies from Node 0

Domain Decomposition

Compute Node 0 Compute Node 1

Distribution across Compute Nodes

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary8-6

Advanced FLUENT Training
UDF Mar 2007

Partition Boundary Face

Interior Face

Exterior Cell

Partitioning (2)
The main cells of the partition are designated “Interior” cells and the additional
copied cells from other Compute Nodes are designated “Exterior” cells
The Partition Boundary Faces are a special type of Interior face

Compute Node 0 Surface Boundary
Zone Face

Interior Cells

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary8-7

Advanced FLUENT Training
UDF Mar 2007

Partitioned Thread Loop (1)
begin_c_loop(c,t)

{
}

end_c_loop(c,t)

� In parallel use, above loop construct loops through the Exterior cells too

� Use begin_c_loop_int(c,t) in all UDFs that are to be parallelized:
begin_c_loop_int(c,t)

{
}

end_c_loop_int(c,t)

� This loop excludes the exterior cells to replicate serial begin_c_loop(c,t)

� Another loop construct loops through the exterior cells only :
begin_c_loop_ext(c,t)

{
}

end_c_loop_ext(c,t)

� It is rarely used in UDFs and does nothing if compiled in serial version

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary8-8

Advanced FLUENT Training
UDF Mar 2007

Partitioned Thread Loop (2)

� Similar loops exist for faces:
begin_f_loop_all(f,t)
{…}
end_f_loop_all(f,t)

begin_f_loop_int(f,t)
{…}
end_f_loop_int(f,t)

� But you can simply use the standard loop and check to see if the face is
“allocated” to this Thread using:

begin_f_loop (f,t)
{

if(PRINCIPAL_FACE_P(f,t))
{…}

}
end_f_loop(f,t)

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary8-9

Advanced FLUENT Training
UDF Mar 2007

Inter-Process Communication (1)

• Each compute node maintain local cache of individual variables
• Synchronization or make global reduction of such data involves

communication in a particular order
• Consider the simple operation of passing a user defined cortex

parameter that is set using scheme but is used in a UDF

Serial Code
DEFINE_INIT(set_temp,domain)
{

real i_temp;
i_temp = RP_Get_Real(“user-temp”);
begin_c_loop(c,t)

C_T(c,t)=i_temp;
end_c_loop(c,t)

}

Combined (Serial & Parallel) Code
DEFINE_INIT(set_temp,domain)
{

real i_temp;
#if !RP_NODE /* i.e. serial or host */

i_temp = RP_Get_Real(“user-temp”);
#endif
host_to_node_real_1(i_temp);
#if !RP_HOST /* i.e. serial or node */

begin_c_loop_int(c,t)
C_T(c,t)= i_temp;

end_c_loop_int(c,t)
#endif
}

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary8-10

Advanced FLUENT Training
UDF Mar 2007

Inter-Process Communication (2)
• To ensure same code to work for serial and parallel versions, negated compiler

directives are mostly used:

#if !RP_NODE /* i.e. serial or host */
#if !RP_HOST /* i.e. serial or node */
#if !PARALLEL /* i.e. serial only */

• The macro “host_to_node_real_1(i_temp); ” is defined as a Send command
in the Host version, a Receive command in the Compute Node versions and does
Nothing in the Serial version

• The reciprocal command to host_to_node_real_1() is
node_to_host_real_1();

• But this only sends the value of temp from Node0 to the Host
• The formal broadcasting and host communication can be done as below:

temp = PRF_GRSUM1(temp); /*This sums up temp over all nodes*/
/*All nodes now have temp=sum */

node_to_host_real_1(temp);/*only Node0 sends data t o Host */

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary8-11

Advanced FLUENT Training
UDF Mar 2007

Global Reduction

This combination process is called “Reduction” and there are a number of ways to
reduce your data depending on what you want:

1) If you want the total value over all the Nodes, you use a Summation Reduction
2) If you want the Max or Min over all the Nodes use a High or Low Reduction
3) If you want a logical test over all nodes use an And or Or Reduction

There are different macros depending on what data type you’re sending:

count = PRF_GISUM1(count); /* Total Integer co unt */
min_temp = PRF_GRLOW1(min_temp);/* Global minimum * /
PRF_GLOR(sonic_tests, 3, work); /* Arrays can be re duced too,

needs a work array */
PRF_GRSUM4(v_x,v_y,v_z,v_mag); /* 4 vars are reduc ed at a time */

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary8-12

Advanced FLUENT Training
UDF Mar 2007

Example UDF (1)
• Find totals and averages of a property over all the cells
• Purpose is to write an UDF that works for both Parallel and Serial solvers

#include "udf.h"
DEFINE_ON_DEMAND(av_pres_in_thread)
{int thread_id;

real vol_sum=0.0, pres_sum=0.0;
#if !RP_HOST /* serial or node */

cell_t c; Thread *t;
#endif /* !RP_HOST */
#if !RP_NODE /* serial or host */

thread_id=RP_Get_Integer("udf/av_thread_id");
#endif /* !RP_NODE */

host_to_node_int_1(thread_id); /* Passes on serial */
#if !RP_HOST /* serial or node */

t= Lookup_Thread(Get_Domain(1), thread_id);
begin_c_loop_int(c,t) /* Internal cells only*/

{vol_sum += C_VOLUME(c,t);
pres_sum += C_P(c,t) * C_VOLUME(c,t);}

end_c_loop_int(c,t)
#endif /* !RP_HOST */ /* Continued */

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary8-13

Advanced FLUENT Training
UDF Mar 2007

Example UDF (2)

#if RP_NODE
Message("Sub totals on Node %d: %f,%f\n",myid ,

pres_sum ,vol_sum);
#endif /* RP_NODE */

vol_sum = PRF_GRSUM1(vol_sum);
pres_sum = PRF_GRSUM1(pres_sum);

#if RP_NODE
Message(”Reduced vals Node %d: %f,%f\n",myid ,

pres_sum ,vol_sum);
#endif /* RP_NODE */
node_to_host_real_2(vol_sum,pres_sum);
#if !RP_NODE /* i.e., host or serial*/

Message("Avg. pressure over Thread %d is %f Pa\n", thread_id,
pres_sum/vol_sum);

#endif /* !RP_NODE */
}

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary8-14

Advanced FLUENT Training
UDF Mar 2007

Message0 ()

• A function that can be run on node0 that prints directly to
the cortex window

• Also works for serial processes

Message0("Average pressure over Thread %d ",thread_ id);
Message0("is %f Pa\n",pres_sum/vol_sum);

• Note the exact similarity of the function “Message0” with
Message and printf commands

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary8-15

Advanced FLUENT Training
UDF Mar 2007

Parallel File Output
� In a parallel session, file I/O can be done only through theNode_Zero

Example:
#if PARALLEL
if (I_AM_NODE_ZERO_P)
{ sprintf (ntim,”outfile-%d", ntime);

if (fd == NULL) /*Open a new file */
{fd = fopen(ntim,"w");}

/* if new file “open” failed, try to append */
if (fd == NULL) /* reopen the file in append-mode*/

{fd = fopen(ntim,"a");
Message("Appending to existing file: %s", ntim);
fprintf(fd,"\nAppend begins at: %f \n", f_time);}

}
#endif

© Fluent Inc. 2/26/2008© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

Miscellaneous

Functions/Macros

Miscellaneous

Functions/Macros

Advanced UDF
Modeling Course

Advanced UDF
Modeling Course

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary9-2

Advanced FLUENT Training
UDF Mar 2007

Trigonometric Functions

� double acos (double x); returns the arc-cosine of x

� double asin (double x); returns the arc-sine of x

� double atan (double x); returns the arc-tangent of x

� double atan2 (double x, double y); returns the arc-tangent of x/y

� double cos (double x); returns the cosine of x

� double sin (double x); returns the sine of x

� double tan (double x); returns the tangent of x

� double cosh (double x); returns the hyperbolic cosine of x

� double sinh (double x); returns the hyperbolic sine of x

� double tanh (double x); returns the hyperbolic tangent of x

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary9-3

Advanced FLUENT Training
UDF Mar 2007

Miscellaneous Math-Functions

� double sqrt (double x); returns the square root of x

� double pow (double x, double y); returns xy

� double exp (double x); returns ex

� double log (double x); returns ln(x)

� double log10 (double x); returns ln10(x)

� double fabs (double x); returns |x|

� double ceil (double x); smallest integer not less than x

� double floor (double x); largest integer not greater than x

� The macroUNIVERSAL_GAS_CONSTANTreturns the value of the
universal gas constant (8314.34), which is expressed in SI units of J/Kmol-K

� The macroM_PI returns the value ofπ

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary9-4

Advanced FLUENT Training
UDF Mar 2007

Standard I/O Functions

� useMessage instead ofprintf in compiled UDFs (UNIX only)

Message ("Volume integral: %g\n", sum_vol);

� FILE *fopen (char *filename, char *type); opens a file

� int fclose (FILE *fd); closes a file

� int fprintf (FILE *fd, char *format, ...); formatted print to a file

� int printf (char, *format, ...); print to screen

� int fscanf (FILE *fd, char *format, ...); formatted read from a file

�� Example:Example:
FILE *fd;
real f1, f2;
fd = fopen(“data.txt”,”r”);
fscanf(fd, “%f %f”,&f1,&f2);
fclose(fd);

See your system manual pages for See your system manual pages for

more detailsmore details

Note that for parallel runs, the I/O Note that for parallel runs, the I/O

macros need to be differentmacros need to be different

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary9-5

Advanced FLUENT Training
UDF Mar 2007

Special Macro’s
� cxboolean Data_Valid_P() Equals1 if data is available,

0 if not
Usage: if(!Data_Valid_P())return;

� cxboolean FLUID_THREAD_P(t0) true if thread t0 fluid thread

� cxboolean SOLID_THREAD_P(t0) true if thread t0 is solid thread

� cxboolean BOUNDARY_FACE_THREAD_P(t0) true if thread t0 is boundary thread
� NULLP(T_STORAGE_R_NV(t0, SV_UDSI_G(p1)))

- Checks for storage allocation of user defined scalars

� CURRENT_TIME Real current flow time (in seconds)

� CURRENT_TIMESTEP Real current physical time step size (in sec)

� PREVIOUS_TIME Real previous flow time (in seconds)

� PREVIOUS_2_TIME Real flow time two steps back in time (in sec)

� N_TIME Integer number of time steps

� N_ITER Integer number of iterations

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary9-6

Advanced FLUENT Training
UDF Mar 2007

Miscellaneous: Vector Utilities
� ND_NDin the declaration of a vector or matrix stands for the actual fluent

dimension (2D / 3D)
� X[ND_ND] is equivalent to:

� 2D: X[2]

� 3D: X[3]

� NV_MAGcomputes the magnitude of a vector:X[ND_ND]

� NV_MAG(x) is equivalent to:

� 2D: sqrt(x[0]*x[0] + x[1]*x[1]);

� 3D: sqrt(x[0]*x[0] + x[1]*x[1] + x[2]*x[2]);

� NV_MAG2computes the sum of squares of vector components

� NV_MAG2(x) is equivalent to:

� 2D: (x[0]*x[0] + x[1]*x[1]);

� 3D: (x[0]*x[0] + x[1]*x[1] + x[2]*x[2]);

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary9-7

Advanced FLUENT Training
UDF Mar 2007

Miscellaneous: Vector Utilities
� ND_SUMcomputes the sum ofND_NDarguments

� ND_SUM(x,y,z) is equivalent to:

� 2D: x + y;

� 3D: x + y + z;

� ND_SETgeneratesND_NDassignment statements

� 2D: ND_SET(u,v,C_U(c,t),C_V(c,t)) is equivalent to:

• u = C_U(c, t);

• v = C_V(c, t);

� 3D: ND_SET(u,v,w,C_U(c,t),C_V(c,t),C_W(c,t)) is equivalent to:

• u = C_U(c, t);

• v = C_V(c, t);

• w = C_W(c, t);

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary9-8

Advanced FLUENT Training
UDF Mar 2007

Miscellaneous: Vector Utilities

� NV_Vperforms an operation on two vectors

� NV_V(a, =, x);

� a[0] = x[0]; a[1] = x[1]; etc.

� Note that if you use+ = instead of= in the above equation, then you get
a[0]+= x[0]; etc.

� NV_VVis a vector operator . The operation that is performed on the elements
depends upon what is used as an argument in place of the+ signs
� NV_VV(a, =, x, +, y) /* The ‘+’ symbol can be replaced by (-, /,*)*/
� 2D: a[0]= x[0]+y[0], a[1]= x[1]+y[1];

� 3D: a[0]= x[0]+y[0], a[1]= x[1]+y[1], a[2]= x[2]+y[2];

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary9-9

Advanced FLUENT Training
UDF Mar 2007

Miscellaneous: Vector Utilities
� NV_V_VSadds a vector to another which is multiplied by a scalar

� NV_V_VS(a,=, x,+,y,*,0.5);

� 2D: a[0]=x[0]+(y[0]*0.5), a[1]=x[1]+(y[1]*0.5);

� Note that + sign can be replaced by-, /, or *, and ‘*’ sign can be replaced by‘/’
� NV_VS_VSadds a vector to another which are each multiplied by a scalar

� NV_VS_VS(a,=,x,*,2.0,+,y,*,0.5);

� 2D: a[0]=(x[0]*2.0)+(y[0]*0.5),
a[1]=(x[1]*2.0)+(y[1]*0.5);

� Note that + sign can be used in place of-, *, or /, and ‘*’ sign can be replaced by‘/’

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary9-10

Advanced FLUENT Training
UDF Mar 2007

Miscellaneous: Vector Utilities
� The dot products of two sets of vector or components
� ND_DOT(x,y,z,u,v,w) is equivalent to:

� 2D: (x*u+y*v);

� 3D: (x*u+y*v+z*w);

� NV_DOT(x,u) is equivalent to:

� 2D: (x[0]*u[0]+x[1]*u[1]);

� 3D: (x[0]*u[0]+x[1]*u[1]+x[2]*u[2]);

� NVD_DOT(x,u,v,w) is equivalent to:

� 2D: (x[0]*u+x[1]*v);

� 3D: (x[0]*u+x[1]*v+x[2]*w);

� NV_CROSS(a,x,y) is available for 3D only:

� It returns the cross product of vectors x and y in the new vector a

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary9-11

Advanced FLUENT Training
UDF Mar 2007

Closure

� All UDF-s must be written in SI units

� UDF-s open up a virtually endless opportunity to extend the modeling
capabilities of the basic FLUENT code

� Details of the examples and all working macros & parameters are
available in the UDF manual at Fluent User Services Center

© Fluent Inc. 2/26/2008© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

User-Defined Functions
Appendix:
C-Programming

User-Defined Functions
Appendix:
C-Programming

Advanced UDF
Modeling Course

Advanced UDF
Modeling Course

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-2

Advanced FLUENT Training
UDF Mar 2007

C and UDF

� Many UDFs can be written and used with some limited
knowledge of ‘C’

� This presentation will introduce only essential syntax and
aspects

� In general, Macros (hook-ups) are available for accessing
various locations in the code during the iterations

� FLUENT has a large number of internal macro-s and variables
that are not accessible from UDFs (Primarily due to copyright
reasons)

� It is advisable to check with your support engineer about the
general concept/task that you want to model using UDF

� More elaborate knowledge of ‘C’ helps reducing UDF
development and debugging time but need not necessarily
provide any extended capabilities

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-3

Advanced FLUENT Training
UDF Mar 2007

A Brief Introduction to ‘C’

� C functions

� C data types

� Pointers and arrays

� Expressions and statements

� C arithmetic and logical operators

� Control flow

� C preprocessor directives

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-4

Advanced FLUENT Training
UDF Mar 2007

The Basic Form of a C Function

/*A simple C function*/ /* Comments are delineated by the character sequence */

/* comments can be placed anywhere in a C listing
use comments liberally to document your UDFs */

#include “udf.h” /* A preprocessor directive for including files */

#define PI 3.14159 /* A preprocessor directive for macro substitution */

real a = 1.2345; /* Global scope: variables defined outside the function body for use

by all functions which follow the definition */

int my-function(int x) /* Function declaration (integer type) */

{ /* C functions are enclosed by curly braces ({...}) */

/* All C statements must end with a semicolon (;) */

int y,z; /* Local scope: Declare data type for variables y, z variables

defined within the function body are local to the function */

y = 11; /* Set y = 11 */

z = a*(x+y)*PI; /* Compute z */

printf(“z = %d”,z); /* Print output to screen */

return z; /* Return integer value */

} /* Right curly brace closes body of function */

� If a function is defined with a specific type, it should return a value of the same
type (using the return statement)

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-5

Advanced FLUENT Training
UDF Mar 2007

Compilers

� C compilers include a library of standard math, I/O, and utility functions
which can be used in your C code

� Common I/O functions
� scanf (...) - formatted read (like FORTRAN READ)
� printf(...) - formatted print (like FORTRAN WRITE)

� Common math functions
� sin (x) - sine function
� cos (x) - cosine function
� exp (x) - exponential function
� sqrt(x) - square root function

� For the UDF compiler, all of the standard functions are
defined in the file udf.h
�� NOTE:NOTE: you do not need a copy of udf.h when you compile your UDF;you do not need a copy of udf.h when you compile your UDF;

the solver gets this from the Fluent.Inc/fluent6.x/src/ directorthe solver gets this from the Fluent.Inc/fluent6.x/src/ directoryy

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-6

Advanced FLUENT Training
UDF Mar 2007

Comparison with FORTRAN

� C functions are similar to FORTRAN function subroutines

/*A simple C function*/ C An equivalent FORTRAN function

int myfunction(int x) INTEGER FUNCTION MYFUNCTION(X)

{

int y,z; INTEGER X,Y,Z

y = 11; Y = 11

z = x+y; Z = X+Y

printf(“z = %d”,z); WRITE (*,100) Z

return z; MYFUNCTION = Z

100 FORMAT(“Z = “,I5)

} END

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-7

Advanced FLUENT Training
UDF Mar 2007

C Data Types (1)

� The UDF interpreter supports standard C data types

� int,long - integer data types

� float,double, real - floating point (real) data types

� char - character data type

� Functions which do not return values are given the typevoid

void myfunction(int x) {...} /*No return needed*/

� You can convert from one type to another by “casting”

� a cast is denoted by(type) where the type isint, float, etc.

int x = 1;

float y = 3.14159;

int z = x+((int) y); /*z = 4*/

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-8

Advanced FLUENT Training
UDF Mar 2007

C Data Types (2)

� C also allows you to create “user-defined” types using typedef

typedef struct list { int a;

float b;

int c;};

typedef struct list mylist; /* mylist is of type structure list*/

mylist x,y,z; /* x,y,z are “struct list” type */

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-9

Advanced FLUENT Training
UDF Mar 2007

Pointers

� Pointers can also point to the beginning of an array (and thus pointers are
strongly connected to arrays in C)

content of address pointed to by ip = 1

� A pointer is a variable which contains theaddress of another variable

� Pointers are defined using the * notation
int *ip; /* a pointer to an integer variable */

� We can make a pointer variable point to the address of predefined variable as
follows

int a=1;
int *ip;
ip = &a; /* &a returns the address of variable a */
printf(“content of address pointed to by ip = %d\n” , *ip);

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-10

Advanced FLUENT Training
UDF Mar 2007

Arrays
� Arrays of variables can be defined using the notation name[size]

wherename is the variable name andsize is an integer which defines
the number of elements in the array

� Some examples

int a[10];

float radii[5];

a[0] = 1;

radii[4] = 3.14159265;

� Notes about C arrays

— The index of C arrays start at 0

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-11

Advanced FLUENT Training
UDF Mar 2007

Expressions and Statements

� Arithmetic expressions in C look much like FORTRAN

� Functions which return values can be used in assignment statements

a = 1+(b-c)*d/4;
pi = 3.141592654;
area = pi*radius*radius;

b = myfunc(a); /* Function myfunc() is defined elsewhere */

c = pow(x,y); /* pow(x,y) returns x raised to power y */

� Functions can also be called without assignments

do-stuff(); /* Function do-stuff() takes no arguments */

printf(“x= %f\n”,x); /* printf(..) is a standard C library function */

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-12

Advanced FLUENT Training
UDF Mar 2007

Common C Operators

� Arithmetic operators

= assignment

+ addition

- subtraction

* multiplication

/ division

% modulo

++ increment

-- decrement

� Logical operators

< less than

<= less than or equal to

> greater than

>= greater than or equal
to

== equal to

!= not equal to

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-13

Advanced FLUENT Training
UDF Mar 2007

Control Flow - “If “and “If-else” Statements

� ‘ if ’ and‘if-else ’ statements � Example

if (logical-expression)

{statements}

if (logical-expression)

{statements}

else

{statements}

C Equivalent FORTRAN code

IF (X.LT.0.) THEN
Y = X/50.

ELSE
Y = X/25.

ENDIF

/* C code */

if (q != 1) {a = 0; b = 1;}

if (x < 0.)

y = x/50.;

else

y = x/25.;

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-14

Advanced FLUENT Training
UDF Mar 2007

for (begin ; end ; increment)
{statements}

where:

begin = expression, executed at beginning of loop

end = logical expression to test for loop termination

increment = expression which is executed at the end of each
loop iteration (usually incrementing a counter)

Control Flow - “For” Loops

Example:
C Equivalent FORTRAN code

INTEGER I,J
N = 10
DO I = 1,10
J = I*I
WRITE (*,*) I,J
ENDDO

/* C code:
Print integers 1-10 and
their squares */

int i, j, n = 10;
for (i = 1 ; i <= n ; i++)
{ j = i*i;

printf(“%d %d\n”,i,j);
}

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-15

Advanced FLUENT Training
UDF Mar 2007

The C Preprocessor

� The UDF interpreter supports C preprocessor directives

� Macro substitutions using:#define name replacement

#define RAD 1.2345

#define Area_Rectangle(x,y) x*y

� The preprocessor simply substitutes the characters of name with those of
replacement

� File inclusion using the directive#include

#include “udf.h”

#include “mystuff.h”

� The files named in quotes must reside in your current directory (except

for udf.h which is read automatically by the solver as noted earlier)

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-16

Advanced FLUENT Training
UDF Mar 2007

Exploring C Further

� Some topics notdiscussed here
� while and do-while control statements
� structures and unions
� recursion
� reading and writing files
� many details!

� For more information on C programming, you may consult any general
text (there are manyavailable)
A good choice is

The C Programming Language, 2nd Ed .
by Brian Kernighan and Dennis Ritchie
Prentice-Hall, 1988

© Fluent Inc. 2/26/2008© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

User-Defined Functions
Appendix II:
More on C-Programming

User-Defined Functions
Appendix II:
More on C-Programming

Advanced UDF
Modeling Course

Advanced UDF
Modeling Course

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-2

Advanced FLUENT Training
UDF Mar 2007

Introduction to C

� Why write in C?
� Topics covered in this brief introduction

� C functions

� C data types

� Pointers, arrays & structures

� Expressions and statements
� C arithmetic and logical operators

� Flow control

� File I/O

� C preprocessor

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-3

Advanced FLUENT Training
UDF Mar 2007

Why C?
� The FLUENT solver is written in C

� C is a versatile language with many versatile features

� Current UDF internal compiler supports only a subset of ANSI C

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-4

Advanced FLUENT Training
UDF Mar 2007

/* A simple C function */ A comment line

#include “udf.h” A preprocessor directive for includi ng files

#define PI 3.14159 A preprocessor d irective for macro substitution

float a = 1.2345; A variable with “global” scope, outside of {}

float myfunction(int x) Function declara tion (returns a float type)

{ Left curly brac e opens body of function

int y; Variable declaratio ns

float z;

y = 11; Set y = 11

z = a*(x+y)*PI; Compute z

printf(“Value is %f”,z); Print z to screen

return z; Return float value

} Right curly brace closes body of function

C Functions (1)

� The basic form of a C function:

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-5

Advanced FLUENT Training
UDF Mar 2007

C Functions (2)
� All C statements must end with a semicolon (;)

� Comments are delineated by the character sequence
/* ... */

� comments can be placed anywhere in a C listing
� use comments liberally to document your UDFs

� Groups of C statements are enclosed by curly braces ({ })

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-6

Advanced FLUENT Training
UDF Mar 2007

C Functions (3)
� Variables defined within a { } body are local to that group (local scope)

� Variables defined outside the function body can be used by all
functions which follow the definition (global scope)

� If a function is defined with a specific type, it must return a value of the
same type (using the return statement). If it doesn't return a value, it
must be declared void

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-7

Advanced FLUENT Training
UDF Mar 2007

C Functions (4)
� C compilers include a library of standard math, I/O, and utility functions

which can be used in your C code

� Some common I/O functions
� scanf(...) - formatted read (like FORTRAN READ)

� printf(...) - formatted print (like FORTRAN WRITE)

� Some common mathematical functions
� sin(x) - sine function

� cos(x) - cosine function

� exp(x) - exponential function

� sqrt(x) - square root function

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-8

Advanced FLUENT Training
UDF Mar 2007

Comparison with FORTRAN

� C functions are similar to FORTRAN function
subroutines

/* A simple C function */ C An equivalent FORTRAN function

int myfunction(int x) INTEGER FUNCTION MYFUNCTION (X)

{

int y,z; INTEGER X,Y, Z

y = 11; Y = 11

z = x+y; Z = X+Y

printf(“z = %d”,z); WRITE (*,100) Z

return z; MYFUNCTION = Z

100 FORMAT(“Z = “,I5)

} END

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-9

Advanced FLUENT Training
UDF Mar 2007

The main() function
� You won’t see it much with UDFs but there is a wrapper function called

main()

� Generally a portal in the same was PROGRAMwas in FORTRAN

#include <stdio.h>

int main(void)

{

printf(“Hello, world\n”);

return 0;

}

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-10

Advanced FLUENT Training
UDF Mar 2007

Exercise: Hello, world

� Start up the editor gedit or emacs

� Type in the program from the previous slide

� Save the file as hello.c

� Compile the program
� cc hello.c –o hello

� Run the program
� ./hello

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-11

Advanced FLUENT Training
UDF Mar 2007

C Data Types (1)
� The UDF compiler supports standard C data types

� int,long - integer data types

� float,double - floating point data types (Usually
use real in UDFs)

� char - character data type

� Functions which do not return values are given the type void
� void myfunction(int x) { ... } /* No return

needed */

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-12

Advanced FLUENT Training
UDF Mar 2007

C Data Types (2)
� You can convert from one type to another by “casting”

� C also allows you to create “user-defined” types using typedef

int z,x = 10;
float y = 3.14159;

z = (int)(x*y); /* z = 31 */

typedef int mytype; /* define mytype to be integer typ e */

mytype a,b,c; /* equivalent to int a,b,c */

typedef float real; /* or double depending on versio n*/

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-13

Advanced FLUENT Training
UDF Mar 2007

Pointers (1)
� A pointer is a variable which contains the address of another variable
� Possibly the greatest leap of faith required for the FORTRAN77

programmer
� When we declare a variable

� int k ;
on seeing int the compiler sets aside 4 bytes of memory to hold the
value of the integer

� In C, k is called an object. Later if we write
� k = 2 ;

the value 2 will be placed at the memory location associated with the
object k

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-14

Advanced FLUENT Training
UDF Mar 2007

Pointers (2)
� Suppose we want a variable that holds a memory location (or address)

� Such a variable is called a pointer

� Consider the declaration
� int *ptr;

� The * informs the compiler we wish to set aside enough memory for an
address

� The int informs the compiler we wish to store the address of an
integer

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-15

Advanced FLUENT Training
UDF Mar 2007

Pointers (3)
� Suppose we store the in ptr the address of our integer k

� ptr = &k;

� Now ptr is said to point to k

� Suppose we want to copy 7 to the address pointed to by ptr
� *ptr = 7;/* Contents of ptr = 7 */

� The * is the dereferencing operator
� It allows access to the value stored at the address ptr

� Since ptr points to k , we have also set the value of k to 7

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-16

Advanced FLUENT Training
UDF Mar 2007

Pointers (4)

?

ptr k

?

ptr k
*ptr

7

ptr k

int *ptr;

int k;

ptr = &k;

*ptr = 7;

?

0x80ff97a4

0x80ff97a4

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-17

Advanced FLUENT Training
UDF Mar 2007

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-18

Advanced FLUENT Training
UDF Mar 2007

Exercise: Pointer1
� Save as pointer1.c, compile and execute it

#include <stdio.h>

int j, k;

int *ptr;

int main(void)

{

j = 1;

k = 2;

ptr = &k;

printf("\n");

printf("j has the value %d and is stored at %p\n", j , (void *)&j);

printf("k has the value %d and is stored at %p\n", k , (void *)&k);

printf("ptr has the value %p and is stored at %p\n", ptr, (void *)&ptr);

printf("The value of the integer pointed to by ptr is %d\n",*ptr);

return 0;

}

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-19

Advanced FLUENT Training
UDF Mar 2007

Pointers (5)
� In C, function parameters are

passed by value
� They only go one way
� You cannot alter the value of a

parameter within a function
and expect the calling function
to see the change

• Complete opposite of F77

� Only one value is returned by
the function

� Classic opportunity to use
pointers!!!!

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-20

Advanced FLUENT Training
UDF Mar 2007

Exercise: By value
#include <stdio.h>

#include <math.h>

int main(void)

{

double x[3] = {1.0, 1.0, 2.0};

double mag;

double unit_vector(double *v); /* Function prototyp e */

printf("Initial vector: (%9.2e%9.2e%9.2e)\n",x[0],x [1],x[2]);

mag = unit_vector(x);

printf("Magnitude of vector: %9.2e\n",mag);

printf("Unit vector: (%9.2e%9.2e%9.2e)\n",x[0],x[1] ,x[2]);

}

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-21

Advanced FLUENT Training
UDF Mar 2007

Exercise: By value (cont.)

� Type this in and compile using
cc by_value.c –lm –o by_value

� Look at the output and
convince yourself that the by
reference route works

double unit_vector(double *v)

{

double magnitude;

magnitude = sqrt(v[0]*v[0]+v[1]*v[1]+v[2]*v[2]);

v[0] = v[0]/magnitude;

v[1] = v[1]/magnitude;

v[2] = v[2]/magnitude;

return (magnitude);

}

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-22

Advanced FLUENT Training
UDF Mar 2007

Arrays (1)
� Arrays are defined using the notation:

� type name[size];

where type is int , float , etc.; name is self-explanatory; and size
is the number of elements in the array

� Examples:
� int a[10];

� float radii[5];

� In C, arrays start with index 0
� a[0] = 1; to a[9] = 44;

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-23

Advanced FLUENT Training
UDF Mar 2007

Arrays (2)

� An alternative way of declaring and initialising an array in
one go:
� int array[] = { 1, 2, 5, 7, 11, 13};

will create an array with six elements

� The six integers are located contiguously in memory

� There is an interesting (and useful) relationship
between arrays and pointers

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-24

Advanced FLUENT Training
UDF Mar 2007

Arrays and Pointers (1)
� We can access the elements of array using pointers

� ptr is set to the address of the zeroth element in the array
� More simply done by ptr = array;

� We can access the ith element of the array as
� *(ptr+i)

int *ptr;

ptr = &array[0];

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-25

Advanced FLUENT Training
UDF Mar 2007

Exercise: Pointer2
� Save as pointer2.c, compile and execute it

#include <stdio.h>

int array[] = {1, 23, 17, 4, -5, 100};

int *ptr;

int main(void)

{

int i;

ptr = &array[0]; /* Pointer points to first element of array */

printf("\n\n");

for (i=0; i<6; i++)

{

printf("array[%d] = %3d ", i, array[i]);

printf("ptr + %d = %3d\n", i, *(ptr+i));

}

return 0;

}

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-26

Advanced FLUENT Training
UDF Mar 2007

Exercise: Pointer 2 (cont.)

� Modify the program by changing

to

and verify that the results are the same

ptr = &array[0];

ptr = array;

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-27

Advanced FLUENT Training
UDF Mar 2007

Structures (1)
� A structure is a user-defined data type

� It is a combination of a number of previous declared types

� Usually appears near the start of a program

typedef struct

{

double real;

double imag;

} Complex; /* types usually capitalised */

Complex c1, c2;

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-28

Advanced FLUENT Training
UDF Mar 2007

Structures (2)
� The individual elements of the

structure are accessed as
follows:

� You can define a pointer to a
structure in the usual way

• complex *c_ptr;

� Referencing the elements of a
structure when using a pointer
is achieved thus:
• c_ptr->real;

which is equivalent to
• (*c_ptr).real;

…but much easier to use!

� Passing pointers to structures
to functions is a good way of
passing data to and fro
• Careful of big structures though!

double x, y;

x = c1.real – c2.imag;

y = c1.imag + c2.real;

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-29

Advanced FLUENT Training
UDF Mar 2007

Exercise: Structure1
#include <stdio.h>

int main(void)

{

Struct

{

char initial; /* last name initial */

int age; /* childs age */

int grade; /* childs grade in school */

} boy,girl;

boy.initial = 'R'; boy.age = 15; boy.grade = 75 ;

girl.age = boy.age - 1; girl.grade = 82; girl.init ial = 'H';

printf("%c is %d years old and got a grade of %d\n",

girl.initial, girl.age, girl.grade);

printf("%c is %d years old and got a grade of %d\n",

boy.initial, boy.age, boy.grade);

}

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-30

Advanced FLUENT Training
UDF Mar 2007

Expressions and Statements

� Arithmetic expressions in C look like F77

� Functions which return values can be used in assignments

� Functions can also be used without assignments

do_stuff(); /* Function do_stuff() takes no arguments */
printf(“x = %f\n”,x); /* printf(..) is a standard C library function */

a = 1.0+(b-c)*d/4.0; /* Note decimal points fo r floats.*/
pi = 3.141592654; /* All statements end with a semic olon. */
area = pi*radius*radius;

b = myfunc(a); /* The function myfunc() is defined elsewhere */
x = pow(y,2); /* pow(x,y) returns x raised to pow er y */

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-31

Advanced FLUENT Training
UDF Mar 2007

Operators (1)

� Arithmetic operators

� = assignment
� + addition
� - subtraction
� *

multiplication
� / division
� % modulo
� ++ increment
� -- decrement

� Logical operators

� < less than
� <= less than or

equal to
� > greater than
� >= greater than

or equal to
� == equal to
� != not equal to

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-32

Advanced FLUENT Training
UDF Mar 2007

Operators (2)
� There are some shortcuts in C

� i++; is the same as i=i+1;

� i++2; is the same as i=i+2;

� Similarly for -- (** and // do NOT exist)

� a +=b; is the same as a = a+b;

� Similarly for -= *= and /=

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-33

Advanced FLUENT Training
UDF Mar 2007

Control of Flow (1)

� if statements

if (logical-expression)

{statements}

else if (logical-expression)

statement;

else

{statements}

Note
A single statement can be used or
multiple statements enclosed in a
{} block.

if (q != 1)

{a = 0; b = 1;}

if (x < 0.)

y = x/50.;

else

{y = x/25.; x=-x;}

IF (X.LT.0.) THEN

Y = X/50.

ELSE

Y = X/25.

X=-X

ENDIF

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-34

Advanced FLUENT Training
UDF Mar 2007

Control of Flow (2)

� for loops
for (begin ; end ; increment)

{statements}

where:

begin ; expression which is
executed at beginning of loop

end ; logical expression which
tests for loop termination

increment ; expression which
is executed at the end of each
loop iteration (usually
incrementing a counter)

/* Print integers 1-10 and
their squares */

int i, j, n = 10;

for (i = 1 ; i <= n ; i++)

{

j = i*i;

printf(“%d %d\n”,i,j);

}

C Equivalent FORTRAN code

INTEGER I,J, N

N = 10

DO I = 1,10

J = I*I

WRITE (*,*) I,J

ENDDO

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-35

Advanced FLUENT Training
UDF Mar 2007

Exercise: Control
� Write a C program to step through the first 10 integers

� If the integer is a multiple of 3 then print out the number itself

� If the integer is a multiple of 4 then print out the number divided by one
less than itself (in floating arithmetic)

� Otherwise add the number to a running total which should be output at
the end

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-36

Advanced FLUENT Training
UDF Mar 2007

File Handling (1)
� printf writes formatted data to

the console/screen

� fprintf writes to a file instead

� scanf and fscanf are similar
functions for reading files

#include <stdio.h>

FILE *iofile;

iofile = fopen(“test.dat”, “w”);

fprintf(iofile, “Hello, world\n”);

fclose(iofile);

printf(“%d\n”, i);

BUT

scanf(“%d”, &i);

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-37

Advanced FLUENT Training
UDF Mar 2007

Exercise: Write

� Modify your control program to write the data to an output
file called control.dat

� Save this as write.c in the usual way

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-38

Advanced FLUENT Training
UDF Mar 2007

The C Preprocessor (1)
� Commands preceded by # are passed through the C preprocessor (ie

before compilation)
� Header file inclusion
� Macro definitions

� File inclusion using the directive #include
� #include <stdio.h>

� #include “udf.h”

� #include “mystuff.h”

� The files named in quotes must reside in your current directory
(except for udf.h which is read automatically by the solver as noted
earlier)

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-39

Advanced FLUENT Training
UDF Mar 2007

The C Preprocessor (2)
� Macro substitutions using #define name replacement

� #define RADIUS 1.2345

� #define DIAM (3.14159*RADIUS)

� The preprocessor simply substitutes the characters of name with those
of replacement

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-40

Advanced FLUENT Training
UDF Mar 2007

The C Preprocessor (3)
� Macro substitutions can be made more like simple functions:

• #define SQR(A)((A)*(A))

• #define DOT_PROD(A,B)(A[0]*B[0]+A[1]*B[1]\
+A[2]*B[2])

� SQR(A) & DOT_PROD(A,B) are replaced by everything after the first
closing “)”.

� The pattern A can be any expression. Note that it is in brackets (A) on
the definition side of SQR(A).

� This avoids errors when A is a complex mathematical expression.
� Note also that there doesn’t have to be a space after the first closing “)”.
� The “\ ” is a continuation character used to split long #define lines onto

multiple lines.

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-41

Advanced FLUENT Training
UDF Mar 2007

Exploring C Further
• Some topics not discussed here

• while and do-while control statements
• unions
• recursion
• many details!

• For more information on C programming, you may consult any general text
(there are many available)

A very good set of books are published by O’Reilly, (www.oreilly.com)
in particular:

Practical C Programming, 3rd Ed .
by Steve Oualline
O’Reilly, 1997

For the more dedicated, the book by the originators of C can be useful:
The C Programming Language, 2nd Ed .
by Brian Kernighan and Dennis Ritchie
Prentice-Hall, 1988

