Tutorial: UDFs For A User-Defined Scalar

1 Introduction

FLUENT solves the transport equation for a user-defined scalar (UDS) in the same way
as it solves the transport equation for a scalar in the core equations, such as a species
mass fraction. The UDS capability can be used to implement a wide-range of physical
models in magnetohydrodynamics, electromagnetics, and more.

In this tutorial we will learn to solve a general scalar diffusion equation as follows:

90
ot

with the following possible types of boundary condition (BC) at the boundary (or a part
of the boundary) of the domain:

e Dirichlet BC: ¢ = D,

—V-(IVg) =Sy, inQ t>0 (1)

e Neumann BC: —T'(0¢/dn) = qo
e Mixed BC: —T'(8¢/0n) = he (¢ — doo)

Here, Dy, qo, hc and ¢, are constant values.

g=-I%2=90 q=hc(d— doo)

q = hC’(§Z$ - d)oo)

2 The Steady-state Solver

First, we tackle a steady-state scalar equation with constant I' and zero source term
(S¢=0) as follows:
V- (IVg) =0 (2)

This is the Laplace’s equation.

Solving the Laplace’s equation by the FLUENT UDS solver does not necessarily re-
quire user-defined functions (UDFs), one can simply activate the UDS from the graphical
user interface. But FLUENT UDS only provides Dirichlet and Neumann conditions for
the boundaries, hence we need to use a UDF in order to apply the mized boundary
condition for a user-defined scalar equation.

2.1 Formulation of the Mixed Boundary Condition

For a generic cell c0 adjacent to the boundary, the diffusive flux across the boundary
face f of the cell is expressed as follows:

—/fl‘(%) dS:/th(¢—¢oo)dS (3)

Use the mid-point rule of surface integral, the diffusive flux can be approximated by
o¢
17 (52) Ay =netor - 624, (@)
")y

In the FLUENT solver, the diffusive flux I'y(0¢/0n);As is approximated by two
parts: the “primary” gradient is evaluated implicitly along the line connecting the cell
centroid c0 to the centroid of face f, then it is corrected by a secondary gradient (or
cross diffusion) term evaluated explicitly by the gradient obtained from the previous
iteration (V):

9¢ (b —00) (A4 = 1 o5 A4
Ff (6n>fAfNFf dr A,e_; +Ff chb A chb 63/_1,-6_; (5)

~ J ~ v
~~

primary secondary

FLUENT provides users with a macro which defines the necessary geometrical variables
of the cell, and another macro which calculates the secondary gradient term in Eq.(5):

BOUNDARY_FACE_GEOMETRY(f, t, A, ds, es, A_by_es, dr0)
BOUNDARY_SECONDARY_GRADIENT_SOURCE (source,SV_UDSI_G(i),dG,es,A_by_es,k)

-

If we designate the secondary gradient term in Eq. (5) as fo, and (A-A)/(A-€,) as Ape,

Eq. (5) and Eq. (4) can be written as:

—hc(dr — doo)Ap = Ffw/lbe + 6o

and ¢y can be expressed as follows:

br = Ly (Ape/dr)peo — Bo +hoAfdoo
= hoAs + T (Ap, /dr)

(6)

(7)

The mixed boundary condition for a user-defined scalar is ready to be specified by
boundary profile ¢; in Eq. (7) through the UDF macro DEFINE_PROFILE(). The source

code is listed in Appendix A of this tutorial.

2.2 FLUENT Case Setup for the Steady-state UDS Solver

As shown in the problem illustration, the problem is a 2-D rectangle, with constant flux,
constant value and mixed boundary conditions along the boundary edges.
For the problem, I'=0.162 W/(m K), specific heat of the material is 1650 J/(kg K),

and $s=550°C, he=20 W/(m?K).

1. Start fluent 2d. Read in the mesh file laplace.msh and perform the grid check.

2. Keep the default solver settings: 2-D, steady-state, segregated solver.

3. Turn on the user-defined scalar:
Define — User-Defined — Scalars.

Increase the number of UDS to 1, and leave the Flux Function as none. Click on

OK to close the panel.

¢ User-Defined Scalars

MNumber of User-Defined Scalars | 1 =

Flux Fun-::tion ﬂ

&

OK | |Cance|| Help |

4. Keep the default Operating Conditions.

5. Compile the UDF source code: In the compiled UDF panel, click Add on the left,
select mixedbc.c, then click Build. The compilation is done when it is indicated
in the FLUENT main console. Finally click Load to load the library.

6. Set up the following material properties for the problem: UDS diffusivity (T') is set
as a constant at 0.162. Since we will not use density nor viscosity in this example
(see Eq. (2)), we can set them to any value. Then change the material name to
maple, and save it over air. Note that in this example, consistency of units is
maintained strictly by us as users according to the physics of the problem.

7. Select the boundary conditions as follows:

e Top wall: constant value at 80.

e Left wall: zero flux (specified flux at constant value 0).

e Right and bottom walls: mixed boundary condition:

—(%)w — o (6 - doo)

where T is the UDS diffusivity (0.162), he=20 and ¢ is 550. The panel shot
is shown for the rightwall: specified value BC is supplied by the appropriate
UDF hook (udf scalarMixedBC).

¢ Wall =

Zone Name

[rightwall

Adjacent Cell Zone
[Bean

Thermal | DPM | Momentum | Species | Audiation |[UDS]| Granutar |
User Defined Scalar Boundary Conditlon User Defined Scalar Boundary Value

User Scalar 0| Specified Value Rl B User Scalar 0|0 iuawmuc:g a F

- "

ok | cunca] e |

e Make sure maple is the material assigned to the whole fluid domain (beam)
(Note: in FLUENT 6.2, UDS solves only the fluid region).

8. Turn off the Flow Equations in Solve — Controls — Solution. Keep the default
settings for the rest.

¢ Solution Controls E‘
Equations E o Under—Relaxation Factors
Flow = f
Densiwll—

Body Forces | ;
Momentum |, -
User Scalaro | 4

Discretization

[smms e a—

Momentum | rirst Grder Upwind ﬂ
User Scalar0| First Order Upwind ﬂ

Pressure-Velocity Coupling

il

OK | Defaultl Cancell Helpl

9. Turn on monitor residual plot, and turn off “Check for Convergence” for uds-0.

10. In Surface — Point, make a point in the center (z=0.025, y=0.05) of the rectangle
for monitoring and call it the middlepoint.

11. In Monitors — Surface, turn on the monitoring (plot and print) of the Sum of
user-scalar-0 on middlepoint per iteration. Monitoring the variation of ¢ at this
point can help us decide whether the calculation is converged or not.

12. Start the solution for about 50 iterations. The value of ¢ no longer changes after
about 40 iterations, and we consider the solution is converged. Save the case and
data file as laplace.cas/dat.

2.3 Results

Here we use Display — contours to visualize the solution of the problem. As it is
clear in the contour plot of ¢, the zero flux boundary on the left side is equivalent to a
symmetry boundary condition.

5.46e+02
. 5.23e+02
5.00e+02
4 FTe+02
4.53e+02
4 30e+02
4.07e+02
3.63e+02
3.60e+02
3.37e+02
3.13e+02
2.80e+02
2.67e+02
2.43e+02
2.20e+02
1.87e+02
1.73e+02
1 50e+02
1.27e+02
1.03e+02
8.00e+01

N

3 The Unsteady Solver
The unsteady user-defined scalar equation

c%—V-(FV(i)):O, inQ,t>0 (8)
is to be solved with the same boundary conditions and a given initial condition.

When the transient term is 0(p¢)/dt, the FLUENT solver can readily handle this
unsteady UDS term when the unsteady solver is turned on (either first- or second-order).
But if the transient term of the user’s equation is not the same as the given form,
users must supply the unsteady term through the DEFINE_UDS_UNSTEADY () macro. For
example, in Eq. (8), ¢ is a variable. Note that for an unsteady heat conduction problem
in dimensional form, ¢ in Eq. (8) represents pc, of the solid material.

3.1 First-order Unsteady Formulation

In finite-volume methods, the transient term is first approximated by a first- or second-
order finite-difference expression, then integrated with respect to the cell volume. The
FLUENT solver expects this transient term to be moved to the right-hand side of the
governing equation and included in the discretized equation as a source term.

The first-order finite-difference backward differencing approximation gives

% ~ ¢n _ ¢n—1
ot At

where ¢" indicates the value of ¢ at the current time level, "~ ! is the value at the
previous time level, and At is the time-step size. Hence

0¢ AVYN . AV
—/Cadv ~ (—CE> QS +CE¢ (9)
S
Apu w

where AV represents the volume of each individual cell. In Eq. (9), the first term on the
right-hand side (RHS) represents the implicit part, and the coefficient multiplying ¢"
is denoted as A,,; the second term on the RHS, called Sy, is the explicit part because
it is expressed by known values at the previous time-step. We can rewrite the volume
integral of the unsteady term as:

—/c%dV — Ay " + S, (10)

and it is ready to be coded in the unsteady macro DEFINE_UDS_UNSTEADY (). The code
is listed in Appendix B.

3.2 FLUENT Case Setup for the Unsteady UDS Solver

The Unsteady diffusion problem represented by Eq. (8) over the same rectangular domain
is solved by a first-order implicit formulation. The boundary condition is also unchanged.
The initial condition is ¢ = 80 throughout the domain.

Since the problem is partially set up in the steady case, here we only outline the
unique steps for the setup of the unsteady solver:

1. Read in the case file of the steady-state problem laplace.cas.

2. Turn on the unsteady term by selecting first-order implicit formulation in
Define — Solver.

3. Compile and load the source code transientMixedBC.c in
Define — User-defined — Functions — Compiled.

4. Select the first-order unsteady UDF by opening
Define — User-defined — Scalars and select unstistOrder: :1ibudf in the
panel:

¢ User-Defined Scalars

Number of User-Defined Scalars I 1 ¢

Unsteady Function j

OK | |Cance|| Help |

5. Initialize the solution by setting scalar-0 to be 80.

6. In the Iterate panel, set time-step size to 0.1 s, and set the number of iterations
per time step to 40. Iterate for 200 time steps.

3.3 Results

Contours of ¢ when t=1, 2, 3, 4 s, respectively, are plotted in the following figure. The
diffusion of ¢ into the domain due to high ¢, in the ambient is clearly visible via the
mixed (convective) boundary condition.

t=1s. t=2s. t=3s. t=4s.

Besides the contour plot, profiles and fluxes of ¢ versus time can be used to investigate
the numerical solution of the model problem.

4 Second-order Unsteady Formulation

It can be easily shown that the following finite-difference, backward differencing approx-
imation to d¢/0t is second-order accurate in time:

% N 3¢n _ 4¢n71 + ¢n72
ot~ 2At

It involves the values of ¢ at three different time levels: ¢", ¢"~! and ¢" 2.

You can use the first-order implicit UDF code in the appendix as a useful guide to
come up with your own second-order implicit unsteady UDF code.

A few hints for the exercise:

(11)

e In the first step of the unsteady simulation (n = 1), ¢"~2 is not available yet (¢"~*
is the initial condition). Therefore we can use the first-order formulation in this
step in order to advance to the second time step (n = 2).

e ¢" 2 is represented by C_UDSIM2(c,t,i) for each cell.

o Get the signs right — remember that the transient term is moved to the RHS of
the equation as a source term.

e Before starting the iteration, the second-order unsteady formulation must be turned
on in Define — Solver.

5 Non-constant Source Term

Another exercise is to implement a non-constant source term in Eq. (1). The macro
DEFINE_SOURCE(name, c, t, dS, eqn) is called to represent Sg. The finite-volume

solver of FLUENT expects the source term to be linearized according to the following

convention: . .
Sy = A+ Bop— (s* - (%) ¢*) + (%) 6 (12)
)) 5

where the superscript * represents the value at the previous iteration, hence A (called
source) and B (called dS[eqn]) can be coded explicitly by using currently known value
of ¢. Note that DEFINE_SOURCE() is a general UDF for all variables. To use it for a
UDS (¢), one needs to hook it up in the boundary condition panel to the cell zone where
¢ is to be solved.

There are various ways to linearize a source term, but the general requirement is that
B (the slope) should be non-positive to enhance convergence of the iterative solution
process. Actually, the more negative the slope is, the better.

6 Summary

A user-defined scalar diffusion equation has been modeled by using UDF's in FLUENT.
Some details of the finite-volume method used by the solver were carefully discussed
when implementing terms in the governing equation and BC. However, treatment of the
advective term V - (F¢) (F is the general flux vector), is not covered here. It will be
tackled in a related tutorial.

Appendix A: Mixed Boundary Condition for a UDS

/K ok ok ok ko ko ok ok sk R ok R ok ok ok kR KR oK K o K KR KR ok R o K ok sk R ok R ok K ok ko kR ok K o Kk Kok ok K ok
/* Implementation of the mixed boundary condition for a UDS (or multiple): */
/* q = hC (phi - PHI_inf) */
/KoK K ok K o K o K o K o K ok sk ok R o K o sk o sk o KR oK K o K sk oK Kok R o K o sk sk ok R ok K o sk sk o KR oK K o K ok oK ok ok K ook o/

#include "udf.h"
#include "sg.h" /* needed for the boundary and secondary gradient macros */

/* */
#define CP 1650.0 /* heat capacity for Maple in (J/kg K) */

#define HTC 20.0 /* heat transfer coefficient for the problem */

#define TINF 550 /* ambient temperature of the problem */

/* */

/* Names of the user-defined scalar to be used */
enum
{
phil,
N_REQUIRED_UDS
};

DEFINE_PROFILE(scalarMixedBC, thread, nv)
{

/* constants must be specified correctly for the mixed BC */
real hC, PHI1_inf;

/* */
face_t f;

real A[ND_ND], dG[ND_ND], drO[ND_ND], es[ND_ND], dr, A_by_es;
real Af;

real beta0, gamma;

real templ, temp2;

Thread *tO=thread->t0;

hC=HTC;
PHI1_inf=TINF;

begin_f_loop(f, thread)
{

/* identify the cell thread adjacent to the face thread f */
cell_t c0 = F_CO(f, thread);

BOUNDARY_FACE_GEOMETRY(f, thread, A, dr, es, A_by_es, dr0);
Af=NV_MAG(A) ;
gamma=C_UDSI_DIFF(cO, t0, phil);

if (NULLP(T_STORAGE_R_NV(tO, SV_UDSI_G(phil))))
beta0=0; /* if gradient is not allocated and stored yet,
bypass the following macro (it happens
when case/data files are being read */
else
BOUNDARY_SECONDARY_GRADIENT_SOURCE(betaO, SV_UDSI_G(phil),dG,
es, A_by_es, gamma);

/* temporary variables used in the profile expression */
templ=gamma*A_by_es/dr;
temp2=hCx*Af;

F_PROFILE(f, thread, nv)
= (temp1*C_UDSI(cO, tO, phil)- betaO + temp2*PHI1_inf)/(temp2 + templ);
}
end_f_loop(f, thread)

}

10

Appendix B: Unsteady UDS: 1st-Order Implicit

Note: Add the program fragment to the code listed in Appendix A before compiling the
source code. The complete UDF is in transientMixedBC.c

/***/

/* Implementation of */
/* */
/* the unsteady term for a user-defined scalar (lst-order) */
/* */

/***/

DEFINE_UDS_UNSTEADY (unstistOrder, c, t, i, apu, su)

{
/* if the unsteady term is different from the default term: d(rho*phi)

this macro is used to specify the appropriate unstready term x/
real volume, cp=CP, deltaTime=CURRENT_TIMESTEP;
volume=C_VOLUME(c, t);

/* the transient term is moved to the RHS of the equation and is split
into two parts---check the FVM algorithm for detail. First-order

backward differencing is implemented below: x/
xapu = —cp*volume/deltaTime;
*su = cpxvolume*xC_UDSI_Mi(c, t, i)/deltaTime;

11

