
© Fluent Inc. 2/26/2008© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

User-Defined Functions
Appendix II:
More on C-Programming

User-Defined Functions
Appendix II:
More on C-Programming

Advanced UDF
Modeling Course

Advanced UDF
Modeling Course

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-2

Advanced FLUENT Training
UDF Mar 2007

Introduction to C

� Why write in C?
� Topics covered in this brief introduction

� C functions

� C data types

� Pointers, arrays & structures

� Expressions and statements
� C arithmetic and logical operators

� Flow control

� File I/O

� C preprocessor

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-3

Advanced FLUENT Training
UDF Mar 2007

Why C?
� The FLUENT solver is written in C

� C is a versatile language with many versatile features

� Current UDF internal compiler supports only a subset of ANSI C

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-4

Advanced FLUENT Training
UDF Mar 2007

/* A simple C function */ A comment line

#include “udf.h” A preprocessor directive for includi ng files

#define PI 3.14159 A preprocessor d irective for macro substitution

float a = 1.2345; A variable with “global” scope, outside of {}

float myfunction(int x) Function declara tion (returns a float type)

{ Left curly brac e opens body of function

int y; Variable declaratio ns

float z;

y = 11; Set y = 11

z = a*(x+y)*PI; Compute z

printf(“Value is %f”,z); Print z to screen

return z; Return float value

} Right curly brace closes body of function

C Functions (1)

� The basic form of a C function:

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-5

Advanced FLUENT Training
UDF Mar 2007

C Functions (2)
� All C statements must end with a semicolon (;)

� Comments are delineated by the character sequence
/* ... */

� comments can be placed anywhere in a C listing
� use comments liberally to document your UDFs

� Groups of C statements are enclosed by curly braces ({ })

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-6

Advanced FLUENT Training
UDF Mar 2007

C Functions (3)
� Variables defined within a { } body are local to that group (local scope)

� Variables defined outside the function body can be used by all
functions which follow the definition (global scope)

� If a function is defined with a specific type, it must return a value of the
same type (using the return statement). If it doesn't return a value, it
must be declared void

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-7

Advanced FLUENT Training
UDF Mar 2007

C Functions (4)
� C compilers include a library of standard math, I/O, and utility functions

which can be used in your C code

� Some common I/O functions
� scanf(...) - formatted read (like FORTRAN READ)

� printf(...) - formatted print (like FORTRAN WRITE)

� Some common mathematical functions
� sin(x) - sine function

� cos(x) - cosine function

� exp(x) - exponential function

� sqrt(x) - square root function

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-8

Advanced FLUENT Training
UDF Mar 2007

Comparison with FORTRAN

� C functions are similar to FORTRAN function
subroutines

/* A simple C function */ C An equivalent FORTRAN function

int myfunction(int x) INTEGER FUNCTION MYFUNCTION (X)

{

int y,z; INTEGER X,Y, Z

y = 11; Y = 11

z = x+y; Z = X+Y

printf(“z = %d”,z); WRITE (*,100) Z

return z; MYFUNCTION = Z

100 FORMAT(“Z = “,I5)

} END

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-9

Advanced FLUENT Training
UDF Mar 2007

The main() function
� You won’t see it much with UDFs but there is a wrapper function called

main()

� Generally a portal in the same was PROGRAMwas in FORTRAN

#include <stdio.h>

int main(void)

{

printf(“Hello, world\n”);

return 0;

}

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-10

Advanced FLUENT Training
UDF Mar 2007

Exercise: Hello, world

� Start up the editor gedit or emacs

� Type in the program from the previous slide

� Save the file as hello.c

� Compile the program
� cc hello.c –o hello

� Run the program
� ./hello

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-11

Advanced FLUENT Training
UDF Mar 2007

C Data Types (1)
� The UDF compiler supports standard C data types

� int,long - integer data types

� float,double - floating point data types (Usually
use real in UDFs)

� char - character data type

� Functions which do not return values are given the type void
� void myfunction(int x) { ... } /* No return

needed */

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-12

Advanced FLUENT Training
UDF Mar 2007

C Data Types (2)
� You can convert from one type to another by “casting”

� C also allows you to create “user-defined” types using typedef

int z,x = 10;
float y = 3.14159;

z = (int)(x*y); /* z = 31 */

typedef int mytype; /* define mytype to be integer typ e */

mytype a,b,c; /* equivalent to int a,b,c */

typedef float real; /* or double depending on versio n*/

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-13

Advanced FLUENT Training
UDF Mar 2007

Pointers (1)
� A pointer is a variable which contains the address of another variable
� Possibly the greatest leap of faith required for the FORTRAN77

programmer
� When we declare a variable

� int k ;
on seeing int the compiler sets aside 4 bytes of memory to hold the
value of the integer

� In C, k is called an object. Later if we write
� k = 2 ;

the value 2 will be placed at the memory location associated with the
object k

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-14

Advanced FLUENT Training
UDF Mar 2007

Pointers (2)
� Suppose we want a variable that holds a memory location (or address)

� Such a variable is called a pointer

� Consider the declaration
� int *ptr;

� The * informs the compiler we wish to set aside enough memory for an
address

� The int informs the compiler we wish to store the address of an
integer

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-15

Advanced FLUENT Training
UDF Mar 2007

Pointers (3)
� Suppose we store the in ptr the address of our integer k

� ptr = &k;

� Now ptr is said to point to k

� Suppose we want to copy 7 to the address pointed to by ptr
� *ptr = 7;/* Contents of ptr = 7 */

� The * is the dereferencing operator
� It allows access to the value stored at the address ptr

� Since ptr points to k , we have also set the value of k to 7

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-16

Advanced FLUENT Training
UDF Mar 2007

Pointers (4)

?

ptr k

?

ptr k
*ptr

7

ptr k

int *ptr;

int k;

ptr = &k;

*ptr = 7;

?

0x80ff97a4

0x80ff97a4

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-17

Advanced FLUENT Training
UDF Mar 2007

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-18

Advanced FLUENT Training
UDF Mar 2007

Exercise: Pointer1
� Save as pointer1.c, compile and execute it

#include <stdio.h>

int j, k;

int *ptr;

int main(void)

{

j = 1;

k = 2;

ptr = &k;

printf("\n");

printf("j has the value %d and is stored at %p\n", j , (void *)&j);

printf("k has the value %d and is stored at %p\n", k , (void *)&k);

printf("ptr has the value %p and is stored at %p\n", ptr, (void *)&ptr);

printf("The value of the integer pointed to by ptr is %d\n",*ptr);

return 0;

}

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-19

Advanced FLUENT Training
UDF Mar 2007

Pointers (5)
� In C, function parameters are

passed by value
� They only go one way
� You cannot alter the value of a

parameter within a function
and expect the calling function
to see the change

• Complete opposite of F77

� Only one value is returned by
the function

� Classic opportunity to use
pointers!!!!

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-20

Advanced FLUENT Training
UDF Mar 2007

Exercise: By value
#include <stdio.h>

#include <math.h>

int main(void)

{

double x[3] = {1.0, 1.0, 2.0};

double mag;

double unit_vector(double *v); /* Function prototyp e */

printf("Initial vector: (%9.2e%9.2e%9.2e)\n",x[0],x [1],x[2]);

mag = unit_vector(x);

printf("Magnitude of vector: %9.2e\n",mag);

printf("Unit vector: (%9.2e%9.2e%9.2e)\n",x[0],x[1] ,x[2]);

}

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-21

Advanced FLUENT Training
UDF Mar 2007

Exercise: By value (cont.)

� Type this in and compile using
cc by_value.c –lm –o by_value

� Look at the output and
convince yourself that the by
reference route works

double unit_vector(double *v)

{

double magnitude;

magnitude = sqrt(v[0]*v[0]+v[1]*v[1]+v[2]*v[2]);

v[0] = v[0]/magnitude;

v[1] = v[1]/magnitude;

v[2] = v[2]/magnitude;

return (magnitude);

}

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-22

Advanced FLUENT Training
UDF Mar 2007

Arrays (1)
� Arrays are defined using the notation:

� type name[size];

where type is int , float , etc.; name is self-explanatory; and size
is the number of elements in the array

� Examples:
� int a[10];

� float radii[5];

� In C, arrays start with index 0
� a[0] = 1; to a[9] = 44;

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-23

Advanced FLUENT Training
UDF Mar 2007

Arrays (2)

� An alternative way of declaring and initialising an array in
one go:
� int array[] = { 1, 2, 5, 7, 11, 13};

will create an array with six elements

� The six integers are located contiguously in memory

� There is an interesting (and useful) relationship
between arrays and pointers

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-24

Advanced FLUENT Training
UDF Mar 2007

Arrays and Pointers (1)
� We can access the elements of array using pointers

� ptr is set to the address of the zeroth element in the array
� More simply done by ptr = array;

� We can access the ith element of the array as
� *(ptr+i)

int *ptr;

ptr = &array[0];

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-25

Advanced FLUENT Training
UDF Mar 2007

Exercise: Pointer2
� Save as pointer2.c, compile and execute it

#include <stdio.h>

int array[] = {1, 23, 17, 4, -5, 100};

int *ptr;

int main(void)

{

int i;

ptr = &array[0]; /* Pointer points to first element of array */

printf("\n\n");

for (i=0; i<6; i++)

{

printf("array[%d] = %3d ", i, array[i]);

printf("ptr + %d = %3d\n", i, *(ptr+i));

}

return 0;

}

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-26

Advanced FLUENT Training
UDF Mar 2007

Exercise: Pointer 2 (cont.)

� Modify the program by changing

to

and verify that the results are the same

ptr = &array[0];

ptr = array;

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-27

Advanced FLUENT Training
UDF Mar 2007

Structures (1)
� A structure is a user-defined data type

� It is a combination of a number of previous declared types

� Usually appears near the start of a program

typedef struct

{

double real;

double imag;

} Complex; /* types usually capitalised */

Complex c1, c2;

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-28

Advanced FLUENT Training
UDF Mar 2007

Structures (2)
� The individual elements of the

structure are accessed as
follows:

� You can define a pointer to a
structure in the usual way

• complex *c_ptr;

� Referencing the elements of a
structure when using a pointer
is achieved thus:
• c_ptr->real;

which is equivalent to
• (*c_ptr).real;

…but much easier to use!

� Passing pointers to structures
to functions is a good way of
passing data to and fro
• Careful of big structures though!

double x, y;

x = c1.real – c2.imag;

y = c1.imag + c2.real;

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-29

Advanced FLUENT Training
UDF Mar 2007

Exercise: Structure1
#include <stdio.h>

int main(void)

{

Struct

{

char initial; /* last name initial */

int age; /* childs age */

int grade; /* childs grade in school */

} boy,girl;

boy.initial = 'R'; boy.age = 15; boy.grade = 75 ;

girl.age = boy.age - 1; girl.grade = 82; girl.init ial = 'H';

printf("%c is %d years old and got a grade of %d\n",

girl.initial, girl.age, girl.grade);

printf("%c is %d years old and got a grade of %d\n",

boy.initial, boy.age, boy.grade);

}

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-30

Advanced FLUENT Training
UDF Mar 2007

Expressions and Statements

� Arithmetic expressions in C look like F77

� Functions which return values can be used in assignments

� Functions can also be used without assignments

do_stuff(); /* Function do_stuff() takes no arguments */
printf(“x = %f\n”,x); /* printf(..) is a standard C library function */

a = 1.0+(b-c)*d/4.0; /* Note decimal points fo r floats.*/
pi = 3.141592654; /* All statements end with a semic olon. */
area = pi*radius*radius;

b = myfunc(a); /* The function myfunc() is defined elsewhere */
x = pow(y,2); /* pow(x,y) returns x raised to pow er y */

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-31

Advanced FLUENT Training
UDF Mar 2007

Operators (1)

� Arithmetic operators

� = assignment
� + addition
� - subtraction
� *

multiplication
� / division
� % modulo
� ++ increment
� -- decrement

� Logical operators

� < less than
� <= less than or

equal to
� > greater than
� >= greater than

or equal to
� == equal to
� != not equal to

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-32

Advanced FLUENT Training
UDF Mar 2007

Operators (2)
� There are some shortcuts in C

� i++; is the same as i=i+1;

� i++2; is the same as i=i+2;

� Similarly for -- (** and // do NOT exist)

� a +=b; is the same as a = a+b;

� Similarly for -= *= and /=

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-33

Advanced FLUENT Training
UDF Mar 2007

Control of Flow (1)

� if statements

if (logical-expression)

{statements}

else if (logical-expression)

statement;

else

{statements}

Note
A single statement can be used or
multiple statements enclosed in a
{} block.

if (q != 1)

{a = 0; b = 1;}

if (x < 0.)

y = x/50.;

else

{y = x/25.; x=-x;}

IF (X.LT.0.) THEN

Y = X/50.

ELSE

Y = X/25.

X=-X

ENDIF

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-34

Advanced FLUENT Training
UDF Mar 2007

Control of Flow (2)

� for loops
for (begin ; end ; increment)

{statements}

where:

begin ; expression which is
executed at beginning of loop

end ; logical expression which
tests for loop termination

increment ; expression which
is executed at the end of each
loop iteration (usually
incrementing a counter)

/* Print integers 1-10 and
their squares */

int i, j, n = 10;

for (i = 1 ; i <= n ; i++)

{

j = i*i;

printf(“%d %d\n”,i,j);

}

C Equivalent FORTRAN code

INTEGER I,J, N

N = 10

DO I = 1,10

J = I*I

WRITE (*,*) I,J

ENDDO

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-35

Advanced FLUENT Training
UDF Mar 2007

Exercise: Control
� Write a C program to step through the first 10 integers

� If the integer is a multiple of 3 then print out the number itself

� If the integer is a multiple of 4 then print out the number divided by one
less than itself (in floating arithmetic)

� Otherwise add the number to a running total which should be output at
the end

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-36

Advanced FLUENT Training
UDF Mar 2007

File Handling (1)
� printf writes formatted data to

the console/screen

� fprintf writes to a file instead

� scanf and fscanf are similar
functions for reading files

#include <stdio.h>

FILE *iofile;

iofile = fopen(“test.dat”, “w”);

fprintf(iofile, “Hello, world\n”);

fclose(iofile);

printf(“%d\n”, i);

BUT

scanf(“%d”, &i);

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-37

Advanced FLUENT Training
UDF Mar 2007

Exercise: Write

� Modify your control program to write the data to an output
file called control.dat

� Save this as write.c in the usual way

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-38

Advanced FLUENT Training
UDF Mar 2007

The C Preprocessor (1)
� Commands preceded by # are passed through the C preprocessor (ie

before compilation)
� Header file inclusion
� Macro definitions

� File inclusion using the directive #include
� #include <stdio.h>

� #include “udf.h”

� #include “mystuff.h”

� The files named in quotes must reside in your current directory
(except for udf.h which is read automatically by the solver as noted
earlier)

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-39

Advanced FLUENT Training
UDF Mar 2007

The C Preprocessor (2)
� Macro substitutions using #define name replacement

� #define RADIUS 1.2345

� #define DIAM (3.14159*RADIUS)

� The preprocessor simply substitutes the characters of name with those
of replacement

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-40

Advanced FLUENT Training
UDF Mar 2007

The C Preprocessor (3)
� Macro substitutions can be made more like simple functions:

• #define SQR(A)((A)*(A))

• #define DOT_PROD(A,B)(A[0]*B[0]+A[1]*B[1]\
+A[2]*B[2])

� SQR(A) & DOT_PROD(A,B) are replaced by everything after the first
closing “)”.

� The pattern A can be any expression. Note that it is in brackets (A) on
the definition side of SQR(A).

� This avoids errors when A is a complex mathematical expression.
� Note also that there doesn’t have to be a space after the first closing “)”.
� The “\ ” is a continuation character used to split long #define lines onto

multiple lines.

Fluent User Services Center

www.fluentusers.com

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary10-41

Advanced FLUENT Training
UDF Mar 2007

Exploring C Further
• Some topics not discussed here

• while and do-while control statements
• unions
• recursion
• many details!

• For more information on C programming, you may consult any general text
(there are many available)

A very good set of books are published by O’Reilly, (www.oreilly.com)
in particular:

Practical C Programming, 3rd Ed .
by Steve Oualline
O’Reilly, 1997

For the more dedicated, the book by the originators of C can be useful:
The C Programming Language, 2nd Ed .
by Brian Kernighan and Dennis Ritchie
Prentice-Hall, 1988

