Compressible Flows

Dr. Gergely Kristóf
12 November 2014.

Speed of infinitesimal disturbances in

From co-moving (relative) frame of reference

Consequence: more data need to be specified at inlet boundaries and less data at outlet boundaries in supersonic flows.

still gas

Numerical schemes for compressible flows

- We can assume, that the state of a computational element is determined by its neighbors.
- That way, the solution of large algebraic systems can be avoided.
- The price to be paid: acoustic waves need to be resolved, that is, the time step size is limited.

Nonlinear wave propagation
What if we generate another small disturbance?

$v_{2}>a$ because:
\int - The second wave propagates in a gas flow of $d v$ velocity.

- The second wave propagates in a gas flow having a higher speed of sound: $p \uparrow \rightarrow T \uparrow \rightarrow a \uparrow$.

The second wave will catch up to the first wave.

Shock waves

A compression wave is steepening, and finally it becomes a shock wave:

Expansion waves behave in the opposite way:

Treated as a discontinuity (finite jump) of the state variables (p, ρ, T and a).

- Propagates faster than the small disturbances. (Only shock waves can do so.)
- Deceleration of supersonic flows are generally caused by shock waves.
- It is a dissipative process. (Causes head losses.)

Analogy
Hydraulic jump in a sink

Resonance in a closed pipe

Pipe length:
Diameter: ${ }_{36}^{6.05 \mathrm{~mm}}$
Piston displacement
$50 \mathrm{~cm}^{3}$.

1D isentropic flows

Unsteady isentropic flow in a constant cross-section pipe Eg. in an exhaust pipe.

More rapid pressur
change in the
compression phase can be observed:

Introduction of the sound speed "a" as a new field variable

Only one state variable can be chosen in isentropic system.
We can use the speed of sound "a" to express the pressure (p) and density (ρ). Both "u" and "a" do have the dimension of m / s.
Continuity: $\quad \frac{\partial \rho}{\partial t}+\frac{\partial(\rho u)}{\partial x}=0$
Euler equation: $\quad \frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=-\frac{1}{\rho} \frac{\partial p}{\partial x}$

Isentropic relation:

$$
\frac{p}{\rho^{\gamma}}=\frac{p_{0}}{\rho_{0}^{\gamma}}
$$

p, ρ, u are unknown functions of x and t
$\frac{p}{\rho^{\gamma}}=\frac{p_{0}}{\rho_{0}{ }^{\gamma}}\left|a^{2}=\frac{\partial p}{\partial \rho}\right|_{s=\text { áll. }}=\gamma \frac{p}{\rho}=\gamma \rho^{\gamma-1} \frac{p}{\rho^{\gamma}}=\gamma \frac{p_{0}}{\rho_{0}^{\gamma}} \rho^{\gamma-1}$
$\left.\begin{array}{rl}\ln (p)-\gamma \ln (\rho)=\ln \left(\frac{p_{0}}{\rho_{0}^{\gamma}}\right) & 2 \ln (a)\end{array}\right)=(\gamma-1) \ln (\rho)+\ln \left(\gamma \frac{p_{0}}{\rho_{0}^{\gamma}}\right)$

We reformulate the governing equations

Continuity: $\begin{aligned} & \frac{\partial \rho}{\partial t} \frac{\partial a}{\partial \rho}+u \frac{\partial \rho}{\partial x} \frac{\partial a}{\partial \rho}+\rho \frac{\partial u}{\partial x} \frac{\gamma-1}{2} \frac{a}{\rho}=0 \\ & \frac{\partial a}{\partial t}+u \frac{\partial a}{\partial x}+\frac{\gamma-1}{2} a \frac{\partial u}{\partial x}=0\end{aligned}$

Euler equation:

$$
\begin{align*}
& \frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+\underbrace{\underbrace{2}}_{\frac{1}{\rho} \frac{\partial p}{\partial x} \frac{\partial a}{\partial p} \frac{2 \gamma p}{\gamma-1 a}}=0 \tag{1}\\
& \frac{\gamma-1}{2} \frac{\partial u}{\partial t}+\frac{\gamma-1}{2} u \frac{\partial u}{\partial x}+a \frac{\partial a}{\partial x}=0
\end{align*}
$$

(2)

Characteristics

C_{+}and C. are the characteristic directions. α and β are Rieman invariants.
u and a can be expressed in terms of α and β.

$$
\left.\begin{array}{l}
\alpha=a+\frac{\gamma-1}{2} u \\
\beta=a-\frac{\gamma-1}{2} u
\end{array}\right\} \begin{aligned}
& a=\frac{\alpha+\beta}{2} \\
& u=\frac{\alpha-\beta}{\gamma-1}
\end{aligned}
$$

Every field variable can than be expressed in terms of a

$$
\left(\frac{a}{a_{0}}\right)^{2}=\frac{T}{T_{0}}=\left(\frac{p}{p_{0}}\right)^{\frac{\gamma-1}{\gamma}}=\left(\frac{\rho}{\rho_{0}}\right)^{\gamma-1}
$$

Numerical solution

$$
\begin{aligned}
& \alpha_{3}=\alpha_{1} \\
& \beta_{3}=\beta_{2}
\end{aligned} \longrightarrow a_{3}=\frac{\alpha_{3}+\beta_{3}}{2} \quad u_{3}=\frac{\alpha_{3}-\beta_{3}}{\gamma-1}
$$

$x_{3}-x_{1}=0.5\left[\left(u_{3}+a_{3}\right)+\left(u_{1}+a_{1}\right)\right]\left(t_{3}-t_{1}\right)+o\left(\Delta t^{2}\right)$
(x.) $x_{2}=0.5\left[\left(u_{3}-a_{3}\right)+\left(u_{2}-a_{2}\right)\left(t_{3}-t_{2}\right)+o\left(\Delta t^{2}\right)\right.$
t_{3}, x_{3} can be calculated.

Boundary conditions

the energy equation
$T_{0}=T+\frac{u^{2}}{2 c_{p}}=\frac{a^{2}}{\gamma R}+\frac{u^{2}}{2 c_{p}}$
$T_{0}=\frac{1}{\gamma R}\left(\frac{\alpha+\beta}{2}\right)^{2}+\frac{1}{2 c_{p}}\left(\frac{\alpha-\beta}{\gamma-1}\right)^{2}$
Either α or β is already given. (Along the outrunning characteristic curve.) The other quantity can be expressed from the above equation.

Outflow:

$$
a_{0}=a=\frac{\alpha+\beta}{2}
$$

Closed pipe: $\quad u=0 \longrightarrow \frac{\alpha-\beta}{\gamma-1}=0 \longrightarrow \alpha=\beta$

The problems...

- The numerical resolution depend on the actual physical properties, therefore it can become very coarse in some regions.
- The characteristic curves running in the same direction can intersect each other.

Finite volume method

The density based approach.

Continuity:	$\frac{\partial \rho}{\partial t}+\frac{\partial \rho u}{\partial x}=0$	
Eq.of motion:	$\frac{\partial \rho u}{\partial t}+\frac{\partial\left(\rho u^{2}+p\right)}{\partial x}=0$	$p=\rho R T$
Energy eq.:	$\frac{\partial \rho e}{\partial t}+\frac{\partial(\rho u e+p u)}{\partial x}=0$	$e=c_{v} T+\frac{u^{2}}{2}$

In vector format: $\quad \frac{\partial \underline{U}}{\partial t}+\frac{\partial \underline{F}}{\partial x}=\underline{Q}$
$\underline{U}=\left[\begin{array}{c}\rho \\ \rho u \\ \rho e\end{array}\right] \quad \underline{F}=\left[\begin{array}{c}\rho u \\ \rho u^{2}+p \\ \rho u e+p u\end{array}\right] \quad \underline{Q}=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$

Step 1:	Two step Lax-Wendroff method with second order accuracy:					
		i-1	$\stackrel{i}{+}$	$\stackrel{i+1}{0}$	\bigcirc	
	$\frac{U_{i+1 / 2}^{n+1 / 2}-\left(U_{i}^{n}+U_{i+1}^{n}\right) / 2}{\Delta t / 2}+\frac{F_{i+1}^{n}-F_{i}^{n}}{\Delta x}=\frac{Q_{i}^{n}+Q_{i+1}^{n}}{2}$ When U is known ρ, u and e can be calculated. $\mathrm{Eg} . \rho=(\rho \mathrm{u}) / \mathrm{u}$ p is than obtained from the equation of state. F and Q values can than be calculated at the time level $\mathrm{n}+1 / 2$.					
Step 2:						$\frac{2^{2}+Q_{i+1 / 2}^{n+1 / 2}}{2}$

This is an explicit time marching scheme. Only conditionally stable. According to the linear stability theory:

$$
\Delta t=\sigma \frac{\Delta x}{a+|u|} \quad \sigma \leq 1 \quad \text { Courant number }
$$

Strong oscillations can take place in the presence of shockwaves.
Fluxes must be corrected by using some upwinding or artificial viscosity.
A similar approach in FLUENT: density based solver + explicit formulation (time integration). The multi step time integration method implemented in FLUENT allows somewhat larger Courant number. (The default value is
$\sigma=1$.)
Specification of the boundary conditions:
the method of characteristics can be used at the domain boundaries.
(There are other approaches too.)

