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Compressible Flows

Dr. Gergely Kristóf

12 November 2014.

Numerical schemes for 

compressible flows

• We can assume, that the state of a computational 
element is determined by its neighbors. 

• That way, the solution of large algebraic systems can be 
avoided.

• The price to be paid: acoustic waves need to be 
resolved, that is, the time step size is limited.
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Momentum 
theorem:

Allievi theorem

Propagation of small disturbances in 

subsonic and in supersonic flow
Positions of an object having velocity v at time instants 0,-1,-2 and -3 
seconds and also showing the wave fronts started in those instants:

v=0 v<a

v>av=a

subsonic
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From co-moving (relative) frame 

of reference
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domain of 

influence

domain of 

influence

Consequence: more data need to be specified at inlet boundaries and less data at 

outlet boundaries in supersonic flows.

Nonlinear wave propagation
What if we generate another small disturbance?

dv2 2v adv

av >2 because:

- The second wave propagates in a gas flow of dv velocity.
- The second wave propagates in a gas flow having a higher
speed of sound: p↑  → T↑  →  a↑ .

The second wave will catch up to the first wave.



2014.11.12.

2

Shock waves
• Treated as a discontinuity 

(finite jump) of the state variables 
(p, ρ, T and a).

• Propagates faster than the small 
disturbances. (Only shock waves 
can do so.)

• Deceleration of supersonic flows 
are generally caused by shock 
waves.

• It is a dissipative process. 
(Causes head losses.)

A compression wave is 
steepening, and finally it 

becomes a shock wave:

Expansion waves 
behave in the opposite 

way:

Analogy
Hydraulic jump in a sink

Application
Schlieren image of a gun fire

[http://www.phschool.com/science/science_news/articles/revealing_covert_actions.html]

Resonance in a closed pipe
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Pipe length:

6.05 m

Diameter:

36 mm

Piston displacement:

50 cm3.

At 29 Hz we measured:

p

φ

More rapid pressure 

change in the 
compression phase 
can be observed:
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p0 and ρ0 are the pressure and density in the reference state. 
p, ρ, u are unknown functions of x and t.

Continuity:

Euler equation:

Isentropic relation:

Unsteady isentropic flow in a constant cross-section pipe.

Eg. in an exhaust pipe.

1D isentropic flows
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Only one state variable can be chosen in isentropic system.

We can use the speed of sound “a” to express the pressure (p) and density (ρ).
Both “u” and “a” do have the dimension of m/s.

Introduction of the sound speed “a” 

as a new field variable
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Continuity:

Euler equation:

a2

We reformulate the governing 

equations
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C+ and C- are the characteristic directions. α and β are Rieman invariants.
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Every field variable can than be expressed in terms of a:
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t3, x3 can be calculated.

Numerical solution
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Inflow:

Either α or β is already given. (Along the outrunning characteristic curve.)
The other quantity can be expressed from the above equation.

Closed pipe:
0
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the energy equation

Outflow:
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T0, p0, a0
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a, u

Boundary conditions
The problems...

• The numerical resolution depend on the 
actual physical properties, therefore it can 

become very coarse in some regions. 

• The characteristic curves running in the 
same direction can intersect each other.
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Continuity:

Eq.of motion:

Energy eq.:

Finite volume method
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Equation of state:

The density based approach.
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When U is known ρ, u and e can be calculated. Eg. ρ=(ρu)/u
p is than obtained from the equation of state.
F and Q values can than be calculated at the time level n+1/2.

Step 1:

Step 2:

Two step Lax-Wendroff method with second order accuracy:
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This is an explicit time marching scheme. Only conditionally stable.

According to the linear stability theory:

Specification of the boundary conditions: 

the method of characteristics can be used at the domain boundaries.
(There are other approaches too.)

Strong oscillations can take place in the presence of shockwaves.

Fluxes must be corrected by using some upwinding or artificial viscosity.

A similar approach in FLUENT: density based solver + explicit formulation 

(time integration). The multi step time integration method implemented in
FLUENT allows somewhat larger Courant number. (The default value is
σ=1.)

Courant number


