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Introduction to C

¢ Why write in C?
¢ Topics covered in this brief introduction
» C functions
> C data types
> Pointers, arrays & structures
» Expressions and statements
» C arithmetic and logical operators
> Flow control
> File 1/O
> C preprocessor
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Why C?

¢ The FLUENT solver is written in C

www.fluentusers.com FLUENT

¢ Cis a versatile language with many versatile features

+ Current UDF internal compiler supports only a subset of ANSI C
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C Functions (1)

¢ The basic form of a C function:

/* A simple C function */ A comment line
#include “udf.h” A preprocessor directive for includi ng files
#define Pl 3.14159 A preprocessor d irective for macro substitution
float a = 1.2345; A variable with “global” scope, outside of {}
float myfunction(int x) Function declara tion (returns a float type)
{ Left curly brac e opens body of function

int y; Variable declaratio ns

float z;

y=11; Sety=11

z = a*(x+y)*Pl, Compute z

printf(“Value is %f",z); Print z to screen

return z; Return float value
} Right curly brace closes body of function

© 2006 ANSYS, Inc. All rights reserved.
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C Functions (2)

¢ All C statements must end with a semicolon (;)

¢ Comments are delineated by the character sequence
[* .
» comments can be placed anywhere in a C listing
» use comments liberally to document your UDFs

¢ Groups of C statements are enclosed by curly braces ({ })
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C Functions (3)

¢ Variables defined within a { } body are local to that group (local scope)

¢ Variables defined outside the function body can be used by all
functions which follow the definition (global scope)

¢ If afunction is defined with a specific type, it must return a value of the
same type (using the return statement). If it doesn't return a value, it
must be declared void
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C Functions (4)

¢ C compilers include a library of standard math, 1/O, and utility functions
which can be used in your C code

¢ Some common I/O functions
> scanf(...) - formatted read (like FORTRAN READ)
> printf(...) - formatted print (like FORTRAN WRITE)

¢ Some common mathematical functions
> sin(x) - sine function
» cos(x) - cosine function
> exp(X) - exponential function
> sgrt(x) - square root function
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Comparison with FORTRAN

& C functions are similar to FORTRAN function
subroutines

/* A simple C function */ C An equivalent FORTRAN function
int myfunction(int X) INTEGER FUNCTION MYFUNCTION (X)
{

int y,z; INTEGER X,Y, Z

y=11; Y=11

Z = X+y, Z = X+Y

printf(“z = %d",z); WRITE (*,100 )Z

return z; MYFUNCTION =Z

100 FORMAT(“Z = “5)
} END
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The main() function

¢ You won't see it much with UDFs but there is a wrapper function called
main()

¢ Generally a portal in the same was PROGRAMas in FORTRAN

#include <stdio.h>

int main(void )

{
printf(*Hello, world\n”);
return O;
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Exercise: Hello, world

*

Start up the editor gedit or emacs

L 2

Type in the program from the previous slide

¢ Save the file as hello.c

4

Compile the program
» cc hello.c —o hello

4

Run the program
> ./hello
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C Data Types (1)

¢ The UDF compiler supports standard C data types

> int,long - integer data types

» float,double - floating point data types (Usually
use real in UDFs)

» char - character data type

¢ Functions which do not return values are given the type void

» void myfunction(int x) { ...} /* No return
needed */
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C Data Types (2)

¢ You can convert from one type to another by “casting”

int z,x = 10;
floaty = 3.14159;
z = (int)(x*y); [*z=31%

¢ C also allows you to create “user-defined” types using typedef

typedef int mytype; /* define mytype to be integer typ e*/
mytype a,b,c; /* equivalent to int a,b,c */
typedef float real; /* or double depending on versio n*/
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Pointers (1)

¢ A pointer is a variable which contains the address of another variable

¢ Possibly the greatest leap of faith required for the FORTRAN77
programmer

¢ When we declare a variable
> int k ;
on seeing int the compiler sets aside 4 bytes of memory to hold the
value of the integer
¢ InC, k is called an object. Later if we write
> k=2 ;
thbe vaIEe 2 will be placed at the memory location associated with the
object
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Pointers (2)

¢ Suppose we want a variable that holds a memory location (or address)

¢ Such avariable is called a pointer

¢ Consider the declaration
> int *ptr;
¢ The * informs the compiler we wish to set aside enough memory for an
address

¢ Theint informs the compiler we wish to store the address of an
integer
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Pointers (3)

Suppose we store the in ptr the address of our integer k
> ptr = &k;

*

¢ Now ptr is said to point to k

4

Suppose we want to copy 7 to the address pointed to by ptr
> *ptr =7;/* Contents of ptr =7 */

¢ The * is the dereferencing operator
> It allows access to the value stored at the address ptr

¢ Since ptr points to k, we have also set the value of k to 7
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Pointers (4)
/

int *ptr;
int k;
ptr k
0x80ff97a4 ptr = &k;
*ptr
ptr k
*ptr =7;
ptr k
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Exercise: Pointerl
¢ Save as pointerl.c, compile and execute it

#include <stdio.h>

int j, k;

int *ptr;

int main(void)

{
=1
k=2;
ptr = &k;
printf("\n");
printf("j has the value %d and is stored at %p\n", j , (void *)&j);
printf("k has the value %d and is stored at %p\n", k , (void *)&K);
printf("ptr has the value %p and is stored at %p\n“, ptr, (void *)&ptr);
printf("The value of the integer pointed to by ptr is %d\n",*ptr);

return 0;

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary
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Pointers (5)

» In C, function parameters are
passed by value

> They only go one way

> You cannot alter the value of a
parameter within a function ;
and expect the calling function
to see the change

» Complete opposite of F77

> Only one value is returned by

the function

» Classic opportunity to use

pointers!!!! j‘
Jﬂ Retumn value
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Exercise: By value

#include <stdio.h>

#include <math.h>

int main(void)

{
double x[3] ={1.0, 1.0, 2.0};
double mag;
double unit_vector(double *v); /* Function prototyp e
printf("Initial vector: (%9.2e%9.2e%9.2e )\n",x[0],x [1],x[2]);

mag = unit_vector(x);

printf("Magnitude of vector: %9.2e\n",mag);

printf("Unit vector: (%9.2e%9.2e%9.2e )\n",x[0],x[1] X[2]);

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary
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Exercise: By value (cont.)

double unit_vector(double *v)

{

double magnitude;

magnitude = sqrt(v[0]*v[O]+V[1]*V[1]+V[2]*V[2]);
v[0] = v[0)/magnitude;

V[1] = v[1})/magnitude;

Vv[2] = v[2]/magnitude;

return (magnitude);

> Type this in and compile using > Look at the output and
cc by_value.c -im —o by_value convince yourself that the by
reference route works
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Arrays (1)

¢ Arrays are defined using the notation:
> type name[size];
where type isint , float , etc.; nameis self-explanatory; and size
is the number of elements in the array
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¢ Examples:
> int a[l10];
» float radii[5];

¢ In C, arrays start with index 0
> a[0] =1, to a[9] = 44;

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary
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Arrays (2)

¢ An alternative way of declaring and initialising an array in
one go:
> int array[]={1, 2,5, 7, 11, 13},

will create an array with six elements

www.fluentusers.com FLUENT

¢ The six integers are located contiguously in memory

> There is an interesting (and useful) relationship
between arrays and pointers

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

ol T 0l www.fluentusers.com FLUENT

Arrays and Pointers (1)

¢ We can access the elements of array using pointers

int *ptr;
ptr = &array[0];

¢ ptr is set to the address of the zeroth element in the array
> More simply done by ptr = array;

¢ We can access the it element of the array as
> *(ptr+i)

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary




Advanced FLUENT Training Fluent User Services Center I\NSYS

ol T 0l www.fluentusers.com FLUENT

Exercise: Pointer2

¢ Save as pointer2.c, compile and execute it

#include <stdio.h>
int array[] = {1, 23, 17, 4, -5, 100};
int *ptr;
int main(void)
{
int i;

ptr = &array[0]; /* Pointer points to first element of array */

printf("\n\n");
for (i=0; i<6; i++)
{
printf("array[%d] = %3d ", i, array[i]);
printf("ptr + %d = %3d\n", i, *(ptr+i));
}

return 0;
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Exercise: Pointer 2 (cont.)

¢ Modify the program by changing

ptr = &array[0];

to

ptr = array;

and verify that the results are the same

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary
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Structures (1)

¢ A structure is a user-defined data type
¢ Itis a combination of a number of previous declared types
¢ Usually appears near the start of a program

typedef struct
{

double real;
double imag;

} Complex; /* types usually capitalised */

Complex c1, c2;

© 2006 ANSYS, Inc. All rights reserved.
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Structures (2)

» The individual elements of the » Referencing the elements of a

structure are accessed as structure when using a pointer
follows: is achieved thus:
e c_ptr->real;
double x, y;

which is equivalent to
e (*c_ptr).real;
...but much easier to use!

x = cl.real — c2.imag;

y = cl.imag + c2.real;

> You can define a pointer to a ) )
structure in the usual way » Passing pointers to structures
. complex *c_ptr; to functions is a good way of
- passing data to and fro

» Careful of big structures though!

© 2006 ANSYS, Inc. All rights reserved.
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Exercise: Structurel

#include <stdio.h>

int main(void)
{
Struct
{
char initial; /* last name initial */
int age; /* childs age */
int grade; /* childs grade in school */
} boy,girl;

boy.initial = 'R'; boy.age = 15; boy.grade =75

girl.age = boy.age - 1; girl.grade = 82; girl.init

printf("%c is %d years old and got a grade of %d\n",
girl.initial, girl.age, girl.grade);

printf("%c is %d years old and got a grade of %d\n",
boy.initial, boy.age, boy.grade);

FLUENT

ial ='H
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Expressions and Statements

¢ Arithmetic expressions in C look like F77
a = 1.0+(b-c)*d/4.0;  /* Note decimal points fo r floats.*/

pi = 3.141592654; /* All statements end with a semic olon. */
area = pi*radius*radius;

¢ Functions which return values can be used in assignments

b = myfunc(a); /* The function myfunc() is defined . _elsewhere */
x = pow(g,2) FUTROtiONSgans alsseb® used without assigmments

do_stuff(); /* Function do_stuff() takes
printf(“x = %f\n",x); /* printf(..) is a standard C

no arguments */
library function */

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary
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Operators (1)

¢ Arithmetic operators .
> = assignment
> + addition
> - subtraction
> *
multiplication
> division
> % modulo
> ++ increment
> - decrement

FLUENT

Logical operators

> < less than

» <= less than or
equal to

> > greater than

> >= greater than
or equal to

» == equal to

> 1= not equal to

© 2006 ANSYS, Inc. All rights reserved.

Advanced FLUENT Training

Fluent User Services Center
UDF Mar 2007 )
www.fluentusers.com

ANSYS, Inc. Proprietary

NANSYS

Operators (2)

¢ There are some shortcuts in C
> i++; is the same as i=i+1;
is the same as i=i+2;

>

i++2;
> Similarly for --
a +=b; isthe same as a = atb;
Similarly for-= *= and /=

FLUENT

(** and// do NOT exist)

© 2006 ANSYS, Inc. All rights reserved.
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Control of Flow (1)

¢ if statements

if (logical-expression)
{statements}

else if (logical-expression)
statement;

else

{statements}

Note

A single statement can be used or
multiple statements enclosed in a
{} block.

© 2006 ANSYS, Inc. All rights reserved.
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Control of Flow (2)

¢ for loops
for (begin ; end ; increment)
{statements}
where:

begin ; expression which is
executed at beginning of loop

end; logical expression which
tests for loop termination

increment ; expression which
is executed at the end of each
loop iteration (usually
incrementing a counter)

© 2006 ANSYS, Inc. All rights reserved.
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if(q!=1)
{a=0;b=1;}

if (x<0.)
y =x/50,;
else
{y = x/25.; x=-x;}

IF (X.LT.0.) THEN
Y = X/50.
ELSE
Y = X/25.
X=-X
ENDIF

Fluent User Services Center

/* Print integers 1-10 and
their squares */

int i, j, n=10;
for(i=1;i<=n;i++)
{
=1
printf(“%d %d\n",ij);
}
C Equivalent FORTRAN code
INTEGER 1,3, N
N =10
DO 1=1,10
J=1*
WRITE (**) 1,J
ENDDO
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Exercise: Control

Write a C program to step through the first 10 integers

2

2

If the integer is a multiple of 3 then print out the number itself

2

If the integer is a multiple of 4 then print out the number divided by one
less than itself (in floating arithmetic)

¢ Otherwise add the number to a running total which should be output at
the end
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File Handling (1)

¢ printf  writes formatted data to
the console/screen

#include <stdio.h>
FILE *iofile;
iofile = fopen(“test.dat”, “w");

¢ fprintf  writes to a file instead forintf(iofile, “Hello, world\n):

fclose(iofile);

¢ scanf and fscanf are similar
functions for reading files

printf(“%d\n”, i);
BUT
scanf(“%d”, &i);

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary
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Exercise: Write

¢ Modify your control program to write the data to an output
file called control.dat

¢ Save this as write.c  in the usual way
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The C Preprocessor (1)

¢ Commands preceded by # are passed through the C preprocessor (ie
before compilation)

> Header file inclusion
> Macro definitions

¢ File inclusion using the directive #include
> #include <stdio.h>
> #include “udf.h”
> #include “mystuff.h”
> The files named in quotes must reside in your current directory

(except for udf.h which is read automatically by the solver as noted
earlier)

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary
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The C Preprocessor (2)

¢ Macro substitutions using #define name  replacement
> #define RADIUS 1.2345
> #define DIAM (3.14159*RADIUS)

¢ The preprocessor simply substitutes the characters of name with those
of replacement
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The C Preprocessor (3)
» Macro substitutions can be made more like simple functions:
« #define SQR(A)((A)*(A))
« #define DOT_PROD(A,B)(A[0]*B[0]+A[1]*B[1]\
+A[2]*B[2])
> SQR(A) & DOT_PROD(A,B) are replaced by everything after the first
closing “)".
» The pattern A can be any expression. Note that it is in brackets (A) on
the definition side of SQR(A).
> This avoids errors when A is a complex mathematical expression.
> Note also that there doesn’t have to be a space after the first closing “)".

> The “\ " is a continuation character used to split long #define lines onto
multiple lines.
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Exploring C Further

« Some topics not discussed here
- while and do-while control statements
« unions
« recursion
« many details!

- For more information on C programming, you may consult any general text
(there are many available)

A very good set of books are published by O’Reilly, (www.oreilly.com)
in particular:

Practical C Programming, 3rd Ed
by Steve Oualline
O'Reilly, 1997

For the more dedicated, the book by the originators of C can be useful:

The C Programming Language, 2nd Ed
by Brian Kernighan and Dennis Ritchie
Prentice-Hall, 1988
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