Introduction

Advanced UbE
Modeling Course’

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

7o
Advanced FLUENT Training Fluent User Services Center ANS& S

UDF Mar 2007 www.fluentusers.com FLUENT

Welcome to Fluent Europe

+ Introducing your trainer....

+ Domestic issues:
o Toilets —all in entrance lobby near reception
e Tea, Coffee and Waterhelp yourself, in customer dining room
o Fire Alarm and Escape Rout@mte alarms are tested at 09:15 Tuesday)

o Visitors Badge teave on front reception desk if you go out at lunchtime,
and when you leave for the evening.

e Smoking —Outside only.

e Taxis —Please |et reception know by
lunchtime if you need a taxi for the
evening.

© 2006 ANSYS, Inc. All rights reserved.

UDF

UDF

Advanced FLUENT Training
Mar 2007

Agenda
09:15-09:30 General Introduction to User Defined Fonet
09:30 —10:00 Fluent Data Structure and Macros
10:00 - 10:15 Break
10:15-10:45 Interpreted / Compiled UDF
10:45 - 11:45 UDF Hooks - ‘DEFINE’ Macros
11:45-12:30 Tutorial Session
12:30 -13:30 Lunch
13:30 —14:.00 User Defined Scalars and Memories
14:00 — 14:30 UDF for Discrete Phase Model
14:30 - 15:00 UDF for Multiphase Flows
15:00 - 15:15 Break
15:15-16:00 Tutorial-session-2
16:00 —16:30 UDF for Parallel FLUENT
16:30 —17:00 Miscellaneous Functions / Macros

© 2006 ANSYS, Inc. All rights reserved.

Advanced FLUENT Training
Mar 2007

o Standard interface can not be programmed to aateigll needs
o Customization of boundary conditions, source temeaction rates

Fluent User Services Center

www.fluentusers.com

Fluent User Services Center

www.fluentusers.com

Why Build UDFs?

(volume and surface), properties
o Solution initialization

o Adjust functions (once per iteration)
o Solve for user defined scalars

NANSYS

ANSYS

o Modify model specific parameters
e Many more...
« Limitations
o Not all solution variables or solver models carabeessed by UDFs

= Example: Cannot change specific heat (would recpdiditional
solver capabilities)

© 2006 ANSYS, Inc. All rights reserved.

ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NS i S

UDE Mar 2007 www.fluentusers.com FLUENT®

User Access Points to the Solver

+ Fluentis so designed that the user can accesshher at some strategic

instances during the solution process
Segr egated Sol ver Coupl ed Sol ver

- User-
defined Solve U-Momentum
t ADJUST
Solve V-Momentum
Flow User / Solve Mass
. Defined } T Momentum & E"
Diag ran; Initialize Source te,mst olve W-M Energy _|__—Source terms
[0}
Solve Mass Continuity;
FLUENT - Update Velocity Y
Solvers Exit Loop —
Solve Energy
Boxes in [Solve Species
red are Eheck
sone Convergenc &‘I’r!‘é‘t"lg lérnl;urlg;lce
 por t ant
user Update P rti [Solve Edd
pdate Properties olve
access Dissipation
poi nt's - -
User-Defined Properties

[User-Defined Boundary Conditions]

© 2006 ANSYS, Inc. All rights reserved. -! ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NS i S

UDF Mar 2007 www.fluentusers.com FLUENT"

User Defined Functions in FLUENT

+ User Defined Functions are not just any C-functions

o User access needs specific “Type” of function calls
o Thes;e Function types or macros are defined in ¢laglér file (e.g.,

udf.h
o UDF’sin FLUENT are available for: e Initialization
e Profil es (Boundary Conditions) zone and variable specific
velocity, temperature, initialization
turbulence, species, scalars e d obal Functions
e Source terns (Fluid and solid adjust, read, write,
zones) execute_on_demand
mass, momentum, energy, e Scal ar Functions
species,_ turbulence, scalars unsteady term, flux vector,
e Properties diffusivity
viscosity, conductivity, density, o Mddel Specific Functions

scattering_phase_function (except

specific heat) reaction rates, discrete phase mode|,

turbulent viscosity

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Fluent DatarStr;
and Macros -

Advanced UDE
Maodeling Course

© 2006 ANSYS, Inc. Al rights reserved.

Advanced FLUENT Training Fluent User Services Center
ol LT A0y www.fluentusers.com

Data structures in FLUENT

/face

/4

cell

Cell

Boundary (face thread orzone)

© 2006 ANSYS, Inc. All rights reserved.

ANSYS, Inc. Proprietary

NNSYS

Domain

FLUENT

Domain

-
Thread

Cell

Fluid (cell thread or zone)

ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center NANSYS

UDF Mar 2007

www.fluentusers.com FLUENT

The Domain

¢ “Domain” is the set of connectivity and hierarchyoirfor the entire
data structure in a given problem. It includes:

» all fluid zones (‘fluid threads’)
» all solid zones (‘solid threads’)
» all boundary zones (‘boundary threads’)

¢ Cell/face - Computational unit, face is one side.
Conservation equations are solved over a cell

¢ Thread - is the collection of cells or faces; defines
fluid/solid/boundary zone

¢ FLUENT®6 introduces the concept of multi-“domain” fawultiphase
simulations (singlephase simulations use singlealomnly)

» Each phase has its own “Domain-structure”

* Geometric and common property information are ghare
among ‘sub-domains’

* Multiphase UDF will be discussed later

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center NANSYS

UDF Mar 2007 www.fluentusers.com FLUENT

The Threads

¢ A ‘Thread ’is a sub-set of theDomain’ structure
¢ Individual fluid ’, ‘solid ’'and eachboundary ’zones are
identified as zones ' and their datatype is maintained dhfead ’
¢ ‘Zone’ and‘Thread ’terms are often used interchangeably
¢ ButZone/Thread ID andThread-datatype are different:
e Zones are identified at mesh level with an ‘intédBr in
the Define - Boundary Condition panel
e Threads, a Fluent-specific datatype, that store structured
information about the mesh, connectivity, modetsperty,
etc. all in one place
 Users identify zones through th2's
e Zone/Thread-ID andThread s are correlated through
UDF macro’s

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center NANSYS

UDF Mar 2007

www.fluentusers.com FLUENT®

Domain and Threads

Wall
Solid-1
. Fluid-1
Inlet . (A2 Porous I Outlet
. Medium
Domain
of _
Analysis Solid=2

Wall

Corresponding

Data set
Domain
Porous
Medium
© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center NANSYS
www.fluentusers.com FLUENT®

UDF Mar 2007

Cell and Face Datatypes

¢ Control volumes (equivalent of ‘FEM:Elements’)fafid and solid
zones are callectéll s’in FLUENT

O The data structure for the cell zones is typedcalb t ’ (the cell
thread)

O The data structure for the cell faces is typeda®' t ’ (the face
thread)

¢ Afluid or solid zone is called a cell zone, whidn be accessed by
using cell threads

¢ Boundary or internal faces can be accessed by taoe threads

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center NANSYS

UDF Mar 2007 www.fluentusers.com FLUENT

Some additional info on Faces

¢ Each Control volume will have a finite number ofda (4 for
tets, 6 for hex and 5 for pyramids, and wedges)

0 Faces on the boundary are also tydade t ’; their
ensemble are listed as boundtage-threads with the
fluid & solid cell-threads undebefine-
Boundary_Condition panel

0 Those faces which are inside the flow-domain andato
share any external boundary are not accessible Boin
(because you do not need them)

0 They can still be accessed from User-Defined-Fonsti

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center NANSYS

UDF Mar 2007 www.fluentusers.com FLUENT

Cell- & face-Threads

Boundary face-thread

Fluid cell-thread the boundary-face ensemble
the Control-volume
ensemble e S Internal face-thread

the Internal-face ensemble
associated to cell-threads

Nodes -
Type Example Details
Domain *d pointer to the collection of all threads
Thread *t pointer to a thread
cell_t c cell identifier
face_t f face identifier

Node *node pointer to a node

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training

UDF Mar 2007

Fluent User Services Center

www.fluentusers.com

NANSYS

FLUENT

Geometry Macros

The argument(c,t) stands for aell, c of a thread, t A Hex cell
Faces
C_NNODES(c, t); Number ofnodes in acell
. Pa ™
C_NFACES(c, t); No. of faces in acell Nodes ‘k
F_NNODES(f, t); No. of nodes in aface B> \

L 2

*

*

¢ C_CENTROID(x, c, t);
& F_CENTROID(x, f, t);
& F_AREA(A, T, 1);

¢ NV_MAG(A);

¢ C_VOLUME(c, t);

¢ C_VOLUME_2D(c, t);

X, Y, Z-coords otell centroid
X, Y, Z-coords oface centroid
Area vector of aface;
Area-magnitude

Volume of acell

Location of cell variables '

C_CENTROID(X,c,t); X: X[3]
C_NNODES(c,t) = 8
C_NFACES(c,t) = 6
F_NNODES(f,t) = 4 each

Volume of a 2Dcell

(Depth is 1m in 2D; 2ftm in axisymmetric)

*

NODE_X(nn);
NODE_Y/(nn);
NODE_Z(nn);

*

Node x-coord;
Node x-coord;
Node x-coord;

© 2006 ANSYS, Inc. All rights reserved.

Advanced FLUENT Training

UDF Mar 2007

Fluent User Services Center

www.fluentusers.com

ANSYS, Inc. Proprietary

NANSYS

FLUENT

Looping Macros for Geometry

¢ thread_loop_c(t, d);
¢ thread_loop_f(t, d);
¢ begin_c_loop(c, t);
¢ end_c_loop(c, t);

¢ begin_f_loop

¢ end_f_loop

¢ f_edge_loop(f, t,en);
¢ f_node_loop(f, t,nn);
¢ c_node_loop(c, t,nn);
¢ c_face_loop(c, t,fn);

© 2006 ANSYS, Inc. All rights reserved.

Loop overcell threads
Loop overface threads
} Loop overcells in acell thread

} Loop overfaces in aface thread
Loop overedges in aface thread
Loop overnodes in aface thread

Loop overnodes in acell thread
Loop overfaces in acell thread

ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center ANSYS

UDF Mar 2007

www.fluentusers.com FLUENT

Pointer to a Thread

¢ Given the integelD of athread , it is possible to retrieve the pointer to
that thread -
intID =1;
Thread *tf = Lookup_Thread(domain, ID);
¢ Conversely, given the pointer tdtaead |, it is possible to retrieve the
integerID of thatthread -

int ID=1;
if (THREAD_IOt)==1)...

intID = 1; int1D =1; .
Thread *tf =) thread_loop_f (tf, domain)
pegin¢ loop() Segnt Fionne 5=
F_CENTROID(FC, f, tf); F_CENTROID(FC, f, tf);
E%’Etlf]()X%f y:%f",FCI0], printf("x:%f y:9f", FC[0],FCIL]);
} end_f_loop(f, tf)

end_f_loop(f, tf)

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center ANSYS

UDF Mar 2007

www.fluentusers.com FLUENT

Cells across a face and Their Threads

¢ These macros identify the neighboring cells ofcefa

¢ This information may be required of some of the emswphisticated UDFs tha
loop through

o faces of a boundary thread or

O a particular cell
¢ Associated with a given face f, and its threadrt potentially two adjac
cells denote@0 andcl (face normals are always pointing outwardly)

o If the face is on the boundary of the domaih,is defined as NULL and
only cO exists
¢ The following macros return the ID of the cell3 andcl, as well as the
associated threads:

A f

c0 = F_CO(f,tf); [* returns thread ID for cell cO*/

tcO = THREAD_TO(tf); [* returns the cell thread pointer for cO */
cl=F_C1(fth); [*returns thread ID for c1 */

tcl = THREAD_T1(tf); [* returns the cell thread pointer for c1 */

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training

UDF Mar 2007

Fluent User Services Center

NANSYS

FLUENT

www.fluentusers.com

Cell Variables

C_R(c,t)
C_P(c,t)
C_U(c,t)
C_V(c,t)
C_W(c,1)
C_T(c,t)
C_H(c,b)
C_K(c,t)
C_D(c,b)
C_YI(c,t,i)
C_UDSI(c,t,i)

L 2R 2R JER JER JER 2R R R R R 2

© 2006 ANSYS, Inc. All rights reserved.

(1)

Density
Pressure

} Velocity components

Temperature

Enthalpy

Turbulent kinetic energy
Turbulent energy dissipation
Species mass fraction

User defined scalar

ANSYS, Inc. Proprietary

Advanced FLUENT Training

UDF Mar 2007

Fluent User Services Center

NANSYS

FLUENT

www.fluentusers.com

Cell Variables

C_DUDX(c,t)
C_DUDY(ct)
C_DUDZ(c,t)
C_DVDX(c,t)
C_DVDY(c,t)
C_DVDZ(c,t)
C_DWDX(c,t)
C_DWDY(c,t)
C_DWDZ(c,t)
C_MU_L(c,t)
C_MU_T(c,)
C_MU_EFF(c,t)
C_DP(c,[i]
C_D_DENSITY(c,b)[i]

L 2R 2R 2R JER 2ER R R K R JER R R R 2

© 2006 ANSYS, Inc. All rights reserved.

(2)

> Velocity derivatives

/

} Viscosities

Pressure derivatives
Density derivatives

ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center NANSYS

UDF Mar 2007 www.fluentusers.com FLUENT

Cell Variables (3)
e C K L(cH

¢ C_K_ T(c) Thermal conductivities

¢ C_K_EFF(cH)

¢ C_CP(c) Specific heat

¢ C_RGAS(c,t) Gas constant

¢ C_DIFF_L(c,t,i) }Species diffusivity

¢ C_DIFF_EFF(c,t,i)

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center NANSYS

UDF Mar 2007 www.fluentusers.com FLUENT

Face Variables

* F_P(ft) Pressure

e F_U@fY

¢ F_V(ft) Velocity components

o F_W(f)

e F_T(fY) Temperature

¢ F_H(f1) Enthalpy

¢ F_K(f,t) Turbulent kinetic energy
¢ F D(ft) Turbulent energy dissipation
* F_YI(fti) Species mass fraction

¢ F_UDSI(ft,i) User defined scalar

¢ F_PROFILE(f,t,i) Boundary profile storage

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center NANSYS

UDF Mar 2007

www.fluentusers.com FLUENT

UDF Macro-s (Types of UDF)

¢ UDF's in FLUENT are available for:

» Boundary conditions Profiles

> Fluid and solid zones Source terms

> Fluid/solid, particle, flow :Properties

> UDS unsteady, flux, diffusivity Scalar Functions

> Zone and variable specific initializationInitialization
> Adjust, read/write, execute_on_demandlobal Function

> Convective & radiative Wall-heat-flux
(Alternative: profile)
» Reaction rates, dpm, slip velocity,... Model Specific Functions

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center NANSYS

UDF Mar 2007 www.fluentusers.com FLUENT

UDF Macro-s (Types of UDF)

¢ Available UDF Macro-s :

> Profiles : DEFINE_PROFILE

> Source terms : DEFINE_SOURCE

> Properties : DEFINE_PROPERTY

» Scalar Functions : DEFINE_UNSTEADY
DEFINE_FLUX
DEFINE_DIFFUSIVITY

> Initialization : DEFINE_INIT

» Global Functions : DEFINE_ADJUST

DEFINE_ON_DEMAND
DEFINE_RW_FILE

> Wall-heat-flux : DEFINE_HEAT_FLUX

> Model Specific Functions : DEFINE_DPM_...
DEFINE_SR_RATE
DEFINE_VR_RATE
DEFINE_SCAT_PHASE_FUNC
DEFINE_DRIFT_DIAMETER
DEFINE_SLIP_VELOCITY

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center ANSYS

UDF Mar 2007 www.fluentusers.com FLUENT

The udf.h File

¢ The udf-macros are defined in thef.h file

¢ udf.h is a fluent header file in theFluent.Inc/Fluentx.y/src/
directory
¢ udf.h mustbe included at the top in each and everyiledf f
> A file may contain more than one UDF
> User can use multiple files for UDF

¢ Any UDF you might writemust use one of théDEFINE_..." macros from
thisudf.h file

Part of the ‘udf.h’ file from~/Fluent.Inc/fluent.y/src directory

#define DEFINE_PROFILE(name, t, i) void name(Thread *, int i)
#define DEFINE_PROPERTY (name,c,t) real name(cell_t c, Thread *t)
#define DEFINE_SOURCE(name, c, t, dS, i) \

real name(cell_t ¢, Thread *t, real dSJ], int i)
#define DEFINE_INIT(name, domain) void name(Domain *domain)
#define DEFINE_ADJUST(name, domain) void name(Domai n *domain)
#define DEFINE_DIFFUSIVITY(name, c, t, i) \

real name(cell_t ¢, Thread *t, int i)

© 2006 ANSYS, Inc. All rights reserved.

ANSYS, Inc. Proprietary

Interpret / Compi
UDFs and/ihe)

Advanced UDE
Modeling Course 4

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS
el T 200 www.fluentusers.com FLUENT

How to use the UDF

¢ First, we need to write and save the C-sourcecéilgaining the
appropriateDEFI NE_MACROTroutine(s).

¢ To use this file, the steps are:
1: Interpret/ Compile the UDF
2: Start the solver (FLUENT) and read in your casel/ditgs

3: Assign the UDFs in the BC and/or other panels for the
appropriate zones

4. Set the UDF update frequency in the Iterate panel
5: Run the calculation as usual

¢ Note: Values obtained from and returned to the solver by
UDFs must be in Sl units

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007 www.fluentusers.com FLUENT

Interpreted Vs. Compiled Code

¢ UDFs can be ‘interpreted’ on-the-fly using the stamid GUI
> does not need a separate compiler and are archigdodependent
> It translates the C-source to assembly language
» Executes the code on line-by-line instantaneously
« performs slower than compiled UDFs
> The interpreter resides in the computer's memory
 involves extra memory usage
¢ UDFs can be precompiled before invoking in FLUENT
> Needs a compiler
> It translates the C-source to machine language¢btibjodules)
> Needs to follow a standard multi-step procedurdl (ve discussed later)
> Creates ‘shared libraries’ linked with the rest a&f Holver

ALL INTERPRETED UDF-S CAN ALSO BE COMPILED
THOUGH THE CONVERSE IS NOT TRUE

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

www.fluentusers.com FLUENT

Interpreted UDFs

¢ Interpreter limitations:
> mixed mode arithmetic,
> structure references etc.
> cannot be linked to compiled system or user lilesari

> less powerful than compiled UDFs due to limitatiams
the C language supported by the interpreter

¢ In particular, interpreted UDFs cannot contain:
> non ANSI-C prototypes for syntax

> declarations of local structures, unions, pointeriinctions,
and arrays of functions

> direct structure references
¢ Interpreted UDFs can indirectly access data stored=LUENT
structure only via a set of macro-s

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training

UDF Mar 2007

Fluent User Services Center

NANSYS

Interpreting the UDF

¢ Define > User Defined
Functions = Interpreted...

Interpreted UDFs @

Source File Name

u_profile.c Browse...
CPP Command Name

cpp

Stack Size

10088 4

V Dispiay Assembly Listing

" Use Contributed CPP

Interpret| Close | Help

¢ Click Interpret

¢ The assembly language code
will scroll past window

© 2006 ANSYS, Inc. All rights reserved.

www.fluentusers.com

FLUENT

(2)

Listing appearing on Fluent windows:

w_profile:
.local .pointer thread (r0)
.local.int position (rl)

0 .local.end
0 save
.local.int f (ré)
8 push.int 0
10 save
.local.int.
. Ski ppi ng display here
L1

132 restore
133 restore
134 ret.v

ANSYS, Inc. Proprietary

Advanced FLUENT Training

UDF Mar 2007

Fluent User Services Center

www.fluentusers.com

NANSYS

FLUENT

Compiled UDF Directory Structure

Unix Tree

libudt |
Makefile| [sc]
|

ultra

| makefiIeI | w—profile.cl

| makefile | [w-profilec| [libudt.so |

|malkefi|e| |\I/v-profi|e.c| | Iibudlf.so |

Windows Tree

libudf

(o)

| makefile | | user_nt.udf | | libudt.all |

| makefile | | user_nt.udf | | libudt.di |

© 2006 ANSYS, Inc. All rights reserved.

ANSYS, Inc. Proprietary

Fluent User Services Center

Advanced FLUENT Training

UDF Mar 2007

www.fluentusers.com

NANSYS

FLUENT

UDF Compilation in F6.2

¢ To compile UDFs from within Fluent, use:
> Define»User_Defined>Functions»Compile... Source Files =|=| || Header Files B
¢ Placing source routines in your working directory profite.c
would be sufficient and necessary
® This GUI creates the directory structure below your
working directory where you have your case and data _Add.. | Delete | _Add...| Delete |
files Libary Name [1ibuae | Build
¢ This GUI identifies the architecture as well as the Losd | concel| _Help |
version of fluent running and compiles only for the

appropriate UDF version (2d/2ddp/3d/3ddp/or any
parallel version)

© 2006 ANSYS, Inc. All rights reserved.

Fluent User Services Center

Advanced FLUENT Training

UDF Mar 2007

www.fluentusers.com

ANSYS, Inc. Proprietary

NANSYS

UDF Compilation in F6.2

¢ Define>User_Defined Functions—>Compile...

& Click on the “Add” button to browse and add source
and header files

¢ Click on “Build” button to compile and then “Load” to
load the library to a case file

¢ The compilation log appears on the Fluent console
window and in a file named log

¢ To unload a compiled UDF, use

Define>User_Defined Functions—>Manage, select the
library, then click Unload button

Source Files | =|| | Header Files EE|
[w_profile.c
Add... | Delete Add... | Delete
Library Name [1ipuaf Build
Seleot File (2]
U Lookin [uef A« ® ek E-
libudf 0] switch-uds.c
uti
uds-couple
ac
[e]be
6] ie.c
|16] rwdlata.c
Files of lype: |Source Files - Cancel
Source Fie(s) FE o

FLUENT

[w_profie.c.

© 2006 ANSYS, Inc. All rights resel

ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007 www.fluentusers.com FLUENT®

Using UDFs - Example

¢ A non-uniform inlet velocity is to be imposed oretBD turbine vane shown
below. The x-velocity variation is to be specifiesl

u(y) =20[1- (y/0.067)3

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS
iz k202007 www.fluentusers.com FLUENT®

A Source Code Example

#i ncl ude "udf.h"

DEFI NE_PROFI LE(vel ocity_profile, thread, position)

{
real x[3]; /* this will hold the position vector*/
real vy;
face t f;
begi n_f | oop(f, thread)
F_CENTRA D(x, f, thread);
y = x[1]; o
F_PROFI LE(f, thread, position) = 20.*(1.- y*y [/
(.067*%.067));
}
end_f_loop(f, thread)
}

ANSYS, Inc. Proprietary

© 2006 ANSYS, Inc. All rights reserved.

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007 www.fluentusers.com FLUENT

Activating the UDF

¢ Access théoundary conditi on panel

& Switch fromconst ant to theUDF functi on in theVel ocity
Magni t ude dropdown list

~| Velocity Inlet

Zone Hame:

I welocity-inlet—11

Velocity Specification Mellmd‘ Magnitude, Normal to Boundary | ﬂ
Reference Frame‘ Absolute | ﬂ
Velocity Magnitude (m;s)l g wdf velocity J’“‘“'ﬂ j
constant

OK | Cancell H|udf xmom_source

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007 www.fluentusers.com FLUENT

Run the Calculation

4 Run the calculation as usual

¢ You can change theDF Profil e Update Interval inthe
Iterate panel (hereitis setto 1)

Iteration
Mumber of Iterations | 1 ‘t,
Reporting Interval | 1 ‘t,
UDF Profile Update Interval | 1 ‘t,
Iterate Apply I Close I Help I

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

www.fluentusers.com FLUENT
Solution of Example problem
& The figure at right shows
velocity field throughout [.
. 3902401
turbine blade passage
3502401
¢ The bottom figure shows
the velocity plot at the inlet .
¢ Notice the imposed 2510401
parabolic profile
1.51e+01
7e0a-02 1.11e+01
5.008-02 I715e+00
* 3188+00
250a-02 . Turbine Vane (1551 cells, 2405 faces, 593 nodes)
‘ Velocity Vectors Colored By Velocity Magnitude (m/s) p—— seghr'neagya] gzd“zko e&;o
Y-Coordinate 0:00s+00 .
{m)
—2608-02 *
—5008-02 - *
—7.608-02
Q & 10 15 20
Velocity Magnitude (m/s)

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

UDF HookS ===
‘DEFINE” Macros

Advanced UDE
Modeling CoursE

© 2006 ANSYS, Inc. Al rights reserved.

Advanced FLUENT Training
UDF Mar 2007

www.fluentusers.com

Boundary Profiles: DEFINE_PROFILE

¢ You can use this UDF to
specify

> Wall
» temperature

* heat flux, shear stress t

Inlets

* velocity

» temperature
 turbulence
* species

e scalars

>

Fluent User Services Center

ANSYS, Inc. Proprietary

NNSYS

FLUENT

Arguments
from the
solver to

this UDF

User
specified
name
#include "udf.h"
DEFINE_PROFILE(w_profile, thread, position)

face_tf;
real b_val;

begin_f_loop(f, thread)

b_val = .../* your boundgyy value*/
F_PROFILE(f, thread, pgsition) = b_val;

}
end_f_loop(f, thread)

¢ The macraegin_f_loop
loops over all faces on the
selected boundary thread
TheF_PROFILE macro
applies the value to fack, on
the thread

thread . The thread of the boundary to
which the profile is attached
position A solver internal variable

(identifies the stack location of
the profile in the data stack)

User can rename the variables at will:
DEFINE_PROFILE(my_prof, t, pos)

Inc. Proprietary

Advanced FLUENT Training

UDF Mar 2007

www.fluentusers.com

Fluent User Services Center

NANSYS

FLUENT

Example 1: Transient Inlet Velocity

¢ Pulsatile flow in a tube
V, =V, + A sin(wt)

whereV, =20 m/s, A =5m/s, = 10 rad/s
¢ Boundary condition is applied at inlet

#include "udf.h"
DEFINE_PROFILE(unsteady_v, t, pos)
{
real time, velocity;
face_tf;
begin_f_loop(f, t)
{
time = RP_Get_Real("flow-time");
velocity = 20.0 +
5.0*sin(10.*time);
F_PROFILE(f, t, pos) = velocity;

}
end_f_loop(f, t)
}

T wall

\ Exit /

Inlet

Pipe Axis

© 2006 ANSYS, Inc. All rights reserved.

Advanced FLUENT Training
UDF Mar 2007

Fluent User Services Center

ANSYS, Inc. Proprietary

NANSYS

www.fluentusers.com

FLUENT

Example 1: Results of Transient Inlet Velocity

¢ Time history of the average velocity at the pip# sixows sinusoidal oscillation

with a mean of 20 and amplitude of 5.

2.60e+H11
2.50e+01 o + +

24041 4+ + + +
230e401 4 4 4 + o+
2.20e+01 o

Average 210e+01 7

Velocity
Magnitude

1.90e+01 J
1500401 3
1708401 3 o+
1608401 3 + o+

1.50e+11 T T T T

2.00e+01 + + +

L] 02 04 0E 0OF

1.2 14 18 1.5]

Flow Time

© 2006 ANSYS, Inc. All rights reserved.

ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

ol LT alo www.fluentusers.com FLUENT®

Example 2: Fully Developed Turbulent Inlet

¢ Profiles for inlet velocityk ande are
used to approximate fully developed
flow conditions T lrle Erancet

¢ Velocity profile follows 1/7 power law

¢ Turbulent kinetic energy varies linearl
from a near-wall peak to a prescribed Expansion
core-flow value

¢ Dissipation is prescribed by a mixing-
length model

¢ Used to minimize the domain size and sensitivitintet boundary conditions

Inlet Channel Expansion

© 2006 ANSYS, Inc. All rights reserved. -! ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

www.fluentusers.com FLUENT®

Example 2: Results of Fully Developed
Turbulent Inlet

¢ Axial velocity profile changes little downstreaminfet boundary

1 10e.00

I 9. BZe-01

B.19e-01

B.77e-01 = = = —

4.44e-01
4.92e-01

I 2.49e-01

1.07e-01 = = = -

-4.58e-0:2

-1.78e-01

-3.21e-01

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

ol T 0l www.fluentusers.com FLUENT

Example 2: Results of Fully Developed Inlet
¢ Turbulence quantities change little downstreanhefinhlet
I’j QEE:UQ I] AHe-01

2 84e-0 _— L ie0r Turbulent Kinetic Energy
35402 Turbulent Kinetic Energy e Dissipation Rate

311602 1 dtie-01 ﬁ
27602 . 25e-01 F F F
224602 1.04e-01

1.80e-02 i 36e-02 L L L

1.97e-02 B.26e-02

N

9.32e-09 4 1He-02

I"Q?E'”’i Iymg-uy
B.12e-4 21514

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

www.fluentusers.com FLUENT

Example 3: Sinusoidal Wall Temperature

¢ Lower wall temperature varies
sinusoidally with x-position
according to
Adiabatic Wall

T, =300 + 100 sin(ttx/L)

¢ |Inlet fluid enters at 300 K et Exit . ——
¢ Upper wall is insulated

Heated Wall

| Temperature: F_PROFILE(f, t, pos) = 300.+100.*sin(PI*x/0.005); |

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

ol T 0l www.fluentusers.com FLUENT

Example 3: Results of Sinusoidal Wall Temperature

¢ Wall (and fluid) temperature reaches peak at mgtieiof channel

4.00e+02
3.90e-02
3 0602 Static Temperature (K)
170e-02
A.60e-02

3.50e+02

4.40e-02

4.40e-02

1.20e+02

I’j 1he-02
3.00e-02

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

ol T 0l www.fluentusers.com FLUENT

Source Terms (1)

¢ The solvers compute source terms using the “limedrform”
S=A+Byg
wheregis the dependent variabla,is the explicit part of the
source term anBgis the implicit part

*
& Arecommended linearization isS = S* +[675] (q)—q)*)
: . og
whereg is the dependent variable

¢ FLUENT Solver will automatically determine whettiee user-
supplied source is enhancing the numerical stalfiiamely, the
diagonal dominance of the system matrix)

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

ol T 0l www.fluentusers.com FLUENT

Source Terms (2)

¢ Source term UDFs can be created for the goverringt®ns:
> continuity
> momentum
> k, €
> energy
> species
> User-defined scalars
¢ Energy source term UDFs may also be defined fod galnes
¢ NOTE: The units of all source terms are expressedrims of
the volumetric generation rat&or example, a source term
for the continuity equation would have units of /84g¥)

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

www.fluentusers.com FLUENT

Source Terms (3)

« Solver call this UDF for each [include "udf.h"

cell in the zone DEFINE_SOURCE¢eell_y_sourcel,
+ The solver passes the UDF the cell, thread, dS, eqn)

cell pointer associated with the

cell real source;

o The variabledS[eqn] setsup |/*S = source + dS[eqn]*phi*/
the implicit part of the source |dS[eqn] = /* expression */
term for the equation the source
term is used for

+ Note that the UDF returns a real}
value for the explicit part of the
source, the implicit part dS[eqn]
is returned in a referenced array

source = /[* expression */

return source,;

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

www.fluentusers.com FLUENT

Source Terms (4)

¢ To activate source terndefine <&Boundary Conditions XHfluid-
1 and click onSource Terms

= Fluid
Zone Name
[Frusaz
e s]
I~ Souwrce Tenms
¥ Momentum {n/m3) lo— j
|

- Porous Zone

Rotation-Axis Origin

x| o
¥m)| o

—

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

ol T 0l www.fluentusers.com FLUENT

Example 4: Position Dependent Porous Media

¢ Channel flow with porous plug
¢ x-momentum loss is linear in y-position, startingnfi zero at lower wall
¢ Fluid flows preferentially near the bottom of tHeaanel

Porous Plug

R \

2.02e+00

1LB4er 0 \\
Inlet

1E7ee Outlet

1.49e+00

1.32e+ 00

1.14e+00

YB7e-01
7.9%e-01

Iﬁ 1Be-1
4 44e-01

Velocity Vectors (m/s)

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS
UDF Mar 2007

www.fluentusers.com FLUENT®

Example 5: Bubble Generated Momentum

¢ A column of bubbles imparts vertical momentui
inside a sparging tank.

¢ The rate of momentum addition is correlated tc
bubble size and number density.

¢ This simple model can be used in place of am

costly multiphase model.

Bubble Plume

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS
ol LT alo www.fluentusers.com FLUENT®

Example 5: Bubble Generated Momentum

¢ The rising plume of bubbles creates circulation
throughout the tank

V=0r12p/(3+)
#include "udf.h" Drag=4Trp*r+v
real bubbler_vol=0.;/*static variable*/ N = f*h/v
DEFINE_SOURCnom_y_src, ¢, t, 1j, eqn) Source=N*Drag*100/Volume

{

#define Pl 3.14159 : i

#define GRAV 9.81

#define bub_rad 1.e-3

real bub_vel,f_d,bub_freq=5.,bubbler_ht=1.;

float bub_num, source;

cell_t cc;

rjlegn] = 0.0;

if(bubbler_vol == 0.) /*Bubbler volume*/

{begin_c_loop(cc, t)
bubbler_vol=bubbler_vol+C_VOLUME(cc,t);
end_c_loop(cc, t)}

/* Calculate force for single bubble */

bub_vel=GRAV*pow(bub_rad,2.)*C_R(c,t)/

(3*C_MU_L(c,t));

f_d =4.*PI*C_MU_L(c,t)*bub_rad*bub_vel;

bub_num = (bub_freg*bubbler_ht/bub_vel);

source = bub_num*f_d*100./bubbler_vol;

return source;

}

.

7

TORIIINY

e

© 2006 ANSYS, Inc. All rights reserved.

ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

ol T 0l www.fluentusers.com FLUENT

Initialization and Example 6

#include "udf.h"

* Initiali;es §0.Iutions for eqtire DEFINE_INIT (my_init_function,domain)
domain, similar to “patching” of { it
cell_tc;
values Thread *thread;
[real xc[ND_ND];
* Exec_uted once at the beginning o thread loop_¢ (thread,domain)
solution process {
- . X begin_c_loop (c,thread)
¢ |Initializatio Function appears undegr
1 1 C_CENTROID(xc,c,thread);
Deflng = User_Defined = i (sQrt(ND, SUM(POW(C[0].05.2.),
Function_hooks... pow(xc[1] - 0.5,2.),
pow(xc[2] - 0.5,2.))) < 0.25)
C_T(c,thread) = 400.;
else

C_T(c,thread) = 300.;

Initialization Function }
Adjust Functionl_,) end_c_loop (c,thread)
Read Case Functionl_ }
Write Case Functionl_
Read Data Function l_
Write Data Function I_

OK | Cancel| Help |

ANSYS, Inc. Proprietary

© 2006 ANSYS, Inc. All rights reserved.

Advanced FLUENT Training Fluent User Services Center I\NSYS
www.fluentusers.com FLUENT

UDF Mar 2007

Adjust Function and Example 7

¢ Function called for every

iteration DEFINE_ADJUSTmy_adjust, domain)
¢ Integrate the turbulent 5* Integrate dissipation. */

dissipation over the whole real Sunl_diss=0-;

domain and print it to the text -Crglrle?g_ t

user interface thread_loop_c (t,domain)

¢ Adjust Function appears under

Define ®User_Defined = begin_c_loop (c.t)

sum_diss += C_D(c,t)* C_VOLUME(c,t);

Function_hooks... end_c_loop (¢}
Initialization Function|none B Megé%?fétﬁéglug/":,%\qu}’%%rﬁql %fiél‘sjgk,)ment

Adjust Function }
Read Case Functiunl_
Write Case Functionl_
Read Data Functionl_
write Data Functionl_

OK | Cancel| Help |

ANSYS, Inc. Proprietary

© 2006 ANSYS, Inc. All rights reserved.

Advanced FLUENT Training

UDF Mar 2007

www.fluentusers.com

Fluent User Services Center

NANSYS

FLUENT

Execute_at End Function and Example 8

¢ This is a general purpose macr
executed at the end of
an iteration in a steady state run,

at the end of a time step in a
transient run.

>

>

¢ UDF for integrating turbulent
dissipation and printing it to
console window at the end of the
current iteration or time step

¢ This Function appears under

Define 9»User_Defined =
Function_hooks...

Initialization Function [pone E

Adjust Funninnl_

Execute At End Fum:linn

Read Case Funclionfyane 1]

Wirite Case Fundiunl_’

Read Data Funninnl_

Write Data Funminnlﬁ

oK | cancel| Help

britinclude "udf.h"
DEFINE_EXECUTE_AT_EN(@xecute_at_end)
{ Domain *d; Thread *t;

real sum_diss=0.;

cell_tc;

d = Get_Domain(1);

thread_loop_c (t,d)

{if (FLUID_THREAD_P(t))
{ begin_c_loop (c,t)
sum_diss+=C_D(c,t)*C_VOLUME(c,t);

end_c_loop (c,t)

printf("Volume |nte ral of turbulent

dissipation: %? , sum_diss);

fflush(stdout)

© 2006 ANSYS, Inc. All rights reserved.

Advanced FLUENT Training
UDF Mar 2007

www.fluentusers.com

Fluent User Services Center

ANSYS, Inc. Proprietary

NANSYS

FLUENT

User Defined I/O

¢ Ability to read/write custom data in

case/data files

»

User—Defined Function Hooks

Can save and restore custom

variables of any data types (e.g.,
integer, real, Boolean, structure)
Useful to savedynamic”
information (e.g., number of
occurrences in conditional
sampling)

Defined usingpEFINE_ RW_FILE— |
macro

Selected in the User-Defined
Function Hooks panel

Initialization Functionﬂ
Adjust Functionﬂ
‘Wall Heat Flux Functionﬂ
Slip Velocity Function_ﬂ
Read Case Functlon\L‘
Write Case Functlon_J
Read Data Functlonﬂ
Write Data Functionﬂ

oK | Cancell Help |

© 2006 ANSYS, Inc. All rights reserved.

ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

ol T 0l www.fluentusers.com FLUENT

User Defined I/0 (2)

#include "udf.h"

int count = 0; /* define and initialize static var iable
count */

DEFINE_ADJUST(it_count, domain)
{

count++;
printf("count = %d\n",count);

DEFINE_RW._FILEwriter, fp)

{
printf("Writing UDF data to data file...\n");
fprintf(fp, "%d",count); /* write out count to data
file */

}
DEFINE_RW_FILEreader, fp)

printf("Reading UDF data from data file...\n");
fs?anf(fp, "%d",&count); /* read count from data fi le
*

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

www.fluentusers.com FLUENT

Properties and Example 9

#include "udf.h"

¢ UDF's can be used to define DEFINE_PROPERT(user_vis, cell, thread)

> Viscosity {
real temp, mu_lam;
» Thermal Conductivity temp = C_T(cell, thread);
» Mass Diffusivity {
> Density if (temp > 288.)

mu_lam =5.5e-3;
else if (temp >= 286.&& temp<=288.)
mu_lam =143.2135- 0.49725 * temp;

¢ UDF's cannobe used to
define specific heat

¢ The function is called for

- else
every cell in the zone mu_lam =1.0;
}
return mu_lam;
55107 T >288K }
[=1143.2-0.49729 286K<T<288K
1 T <286K

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

ol T 0l www.fluentusers.com FLUENT

Properties (2)

¢ To activate the UDF, select [
user-defined from the Nane Materis Tove Oder Materials By
property drop down list G T
Chemical Formula Fluid Materi [| =] rmula
¢ When you select the user- | | | ar
defined option, a panel will || | eoperties
appear with the names of Deraty b4 [constant
your UDF’s Lz
¢ Select the name of the T ,E
approp”ate UDF Thermal Conductivity {w/m—k) @ o Cancet e
m
Vet) | aercetmed | ¥| g
——
£
Change/Create | Detete | clase | Help |

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

www.fluentusers.com FLUENT

Example 10: Temperature Dependent Viscosity

¢ Warm fluid enters the channel flowing from leftright.
¢ Viscosity increases as the fluid is cooled by cointéth the cold

1.00e+00
upper wall. s.012-01
#include "udf.h" s01e-01
DEFINE_PROPERT{user_vis, cell, thread) 202801
{real temp, mu_lam; 02601
temp = C_T(cell, thread); R
{/* Limit viscosity for high temperature */
if (temp > 288.) mu_lam = 5.5e-3; o
/* Otherwise, use a profile for viscosity */ B
else if (temp >= 286. && temp <= 288.) |
mu_lam = 143.2135-0.49725*temp; ﬁ"‘m'm
e|Se 5.50e-03
mu_lam =1.0; \“
}
return mu_lam;
}

Contours of molecular viscosity (kg/ms)

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

www.fluentusers.com FLUENT

Time Step: DEFINE_DELTAT

¢ In Fluent, you may use adaptive

Time Adaptive Time Stepping
H H H Time Step Size ($) [0 0001 Truncation Error Tolerance (S) o1
timesteping based on minimum and e S et
maximum values of timesteps as Well | e seomingvetroa Minimum Time Step Sire () [ro-35
o < F‘*:: e Maximum Time Step Size (5) 1o
as Other paramete' > om::.s L Minimum Step Change Factor[g.5
¢ Adaptlve tl mesteppl ng |S actlvated by I" Data Sampling for Time Statistics ‘ Maxium Step Change Factor[s
H H . teration Number of Fixed Time Steps)
selecting the corresponding radio- i s sertenestoe ,,m:dmmj
button in theSolve-lterate Reporting nteralfi—— 2|
UDF Profile Update Interval =
panel for unsteady problems ’ -
[erate| Apply | Close | Help
¢ DEFINE_DELTATIets the user

- #include "udf.h"
control the timestep based on any DEFINE_DELTATmydeltat, domain)

custom logic/algorithm

real time_step;

real flow_time =
RP_Get_Real("flow-time");

if (flow_time <0.5)
time_step =0.1;

else

time_step =0.2;

return time_step;

}

© 2006 ANSYS, Inc. All rights reserved.

ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

www.fluentusers.com FLUENT

Turbulent Viscosity: DEFINE_TURBULENT_VISCOSITY

DEFINE_TURBULENT_VISCOSIT{imy_mut,cell,thread)
¢ Any custom relation for the {

turbulent viscosity real mu_

. real rho = C_R(cell,thread);
formulation can be adopted |, k=C_K(cell thread):

using this UDF hook real epsilon=C_D(cell,thread);
& The variable names for the = mut= M_keCmu*rho*SQR(k)/epsilon;
constants in the standarctk- return mut; L\

model are: K2
. . Viscous Model £
I Cl . M_keC]- Mo Model Constants ILII =] C/_,p_
© Inviscid Cmu
> C, :M_keC2 " Laniar C— &
— © Spalart-Allmaras (1 eqn) oo
| . keepsilon (2 eqn) -Epsilon
> Cu :M_keCmu Plar (Hons .
. © Reynolds Stress (5 eqn) 2-Epsilon
> 0, :M_keigk Kepsilon Model D
. ¢ Standard TKE Prandtl Number
3 - © RNG
> G M—kelge © Realizable ' |
\ . Near-Wall Treatment User-Defined Functions
z 08 : M—keprt © Standard Wall Functions Turbulent Viscosity
© Non-Equilibrium Wall Functions |my_mut
© Enhanced Wall Treatment
Options
I Viscous Heating

© 2006 ANSYS, Inc. All rights reserved.

ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

www.fluentusers.com FLUENT

Radiation Reflectivity: Discrete Ordinate Model Only

¢ Diffused Reflectivity

¢ Modify the interfacial reflectivity atliffusely reflecting semi-transparent walls,
based on the refractive index

¢ This function is called for each semi-transpareall wnd each band (non-gray
DO Model)

¢ The function can be used to modify interface vahbfediffuse reflectivity and
diffuse transmissivity
¢ In this example, reflectivity values are not
customized: they are just printed M I oo i
Adjuswunninnl,m,m—;,
#include "udf.h" Execute At End FunninnlW,
DEFINE_DOM_DIFFUSE_REFLECTIVITY Wall Heal Flux Function [none i
(user_dom_diff_refl, t, nband, DO Source Function [ger_dom_source 7|
n_a, n_b, diff ref_a, diff_tran_a, DO biffuse Reficcivity Function EYNTNTRE |
(diff_ref_b, diff_tran_b) DO Specular Reflectivity FunminnlW,
printf("diff_ref_a=%f diff_tran_a=%f\n", R e U fers F|

*diff_ref_a, *d if_f_tran_a); wWrite Case Function ,m,m—_,,
printf("diff_ref_b=%f diff_tran_b=%f \n", Read Data Function[jone |
*diff_ref_b, *diff_tran_b); Wit Data Functonoome]

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

ol T 0l www.fluentusers.com FLUENT

Radiation Reflectivity: Discrete Ordinate Model (2)

¢ Specular Reflectivity

¢ Modify the speculareflectivity and transmitivity at semi-transparerslis,
along direction s at a face (f)

¢ The same UDF is called for all the faces of theidesmsparent wall, for each of
the directions

#include "udf.n" Initialization Function[pone =

DEFINE_DOM_SPECULAR_REFLECTIVITY Adjust Funcliunli-nune i
(user_dom_spec_refl, f, t, nband, n_a, Execute At End Funmnnl—_lgxmm_a._gnd B

ray_direction, en, Wall Heat Flux Function [gne T
internal_reflection, DO Source Fun.:uunl_u5,3,7.1.],“75[,.1":E B

specular_reflectivity ' i '
iecivi ! DO Diffuse Reflectivity Function d diff re -
specular_transmissivity) user_dom_diff_re

n_b,

{ real angle, cos_theta; DO Specular Reflectivity Function E
real Pl = 3.141592; Read Case Functinnlrmng—;l
cos_theta = NV_DOT(ray_direction, en); Ty Fu"ﬂiunlnune—;l

angle = acos(cos_theta);

if (angle >45 && angle < 60) Read Data Function pope -
{ *specular_reflectivity = 0.3; Write Data Funtﬁonlnune—;l

*specular_transmissivity = 0.7;

} } 0K Cancel Help

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

ol T 0l www.fluentusers.com FLUENT

Emission & Scattering: Discrete Ordinate Source Macro

¢ Can be used to modify the emission and scatterimgstén the radiative
transport equation

,
#InC|ude "Udf.h" Initialization Functiunl_
DEFINE_DOM_SOURQiser_dom_source, Adjust Function logne |

¢, t, ni, nb, emission, Exceute At End Functon [exeeute_a_end |
in_scattering, abs_coeff, Wall Heat Flux Functon [ogne |
scat_coeff) DO Source Funciion [EESFEe |
{ o DO Diffuse Reflectivity Function lml
*emission *= 1.05; DO Specular Reflectivity Fundiunlm

} Read Case Funminnlh
Write Case Functiunl_

Read Data Funminnlh

Write Data Functinnl_

0K Cancel Help

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

ol T 0l www.fluentusers.com FLUENT

Scattering Phase Function: biscrete Ordinate Model

¢ Define the radiation scattering phase functiorttier Discrete Ordinates
(DO) model

¢ The function computes two values: the fractionasfiation energy
scattered from directiofto directionj, and the forward scattering factor

¢ Look at the UDF manual for a complete listing of thDF for
backward and forward scttering phase functions dtedoubi et al.
Thermophys. Heat Transfer, 7(2):213-219, 1993

¢ This function is loaded as user-defin e

scattering coefficient in the materials fiaa T
panel lChemIr:nI Formula ‘Fal;:ldMahmls j —
#include "udf.h" Cr—
DEFINE_SCAT_PHASE_FUNC(Scat_Phi_B2,c,fsf) R rwrmr s =
u [oonstant] e
ﬁ—l
real phi=0; Scateing Cocfiient(1/m) [yt feinea] reai]
*fsf = 0; ; o —
. . Scm:nngPhu:Funumn'h’ Edits
phi=1.0- 1.2*c + 0.25%(3*c*c-1);]——‘
return (phi); Reftactive Index ooneram] i
EEE—
} -
ChangefCreate | Delete Close | Help |

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

ol T 0l www.fluentusers.com FLUENT

Additional Macros

¢ There are a number of additional model specificnosc

> You can learn more about these from the UDF masertion
4.3

DEFINE_CHEM_STEP(name, ifail, n, dt, p, temp, yk)
DEFINE_NET_REACTION_RATE(name, p, temp, i, tr, ja c)
DEFINE_NOX_RATE (name, c, t, NOx)
DEFINE_PRANDTL_D (name, c, t)
DEFINE_PR_RATE (name, c, t, r, mw, ci, p, sf,

dif_index, cat_index, rr)
DEFINE_SR_RATE (name, f, t, r, my, yi, 1)
DEFINE_VR_RATE (name, c, t, r, mw, Vi, rr, rr_t)
DEFINE_TURB_PREMIX_SOURCE (name, c, t, turb_flame_ speed,

source)

¢ Multiphase specific macros will be discussed later

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

User DefinedlS
and Memories

Advanced UDE
Modeling CoLrse -

© 2006 ANSYS, Inc. Al rights reserved.

Advanced FLUENT Training

UDF

Fluent User Services Center

Mar 2007)
www.fluentusers.com

User Defined Scalars (1)

¢ FLUENT can solve generic transport
equations for User Defined Scalars

¢ The menu is accessed through
Define ->Models >User-Defined
Scalars...

¢ User specifies number of User- Defined
Scalars and UDF can be used for parts of

scalar transport equation :

> Advective:DEFINE_UDS_FLUX

> UnsteadyDEFINE_UDS_UNSTEADY
e Diffusivity: DEFINE_DIFFUSIVITY

v v
? ? 3 (Yop
— + — i = D +S
iGh vy (o uip) axj[axj]
) a e
IGadhdrrs (@0 uip)= x| o,

ANSYS, Inc. Proprietary

NNSYS

FLUENT

—| User—Defined Scalars

Humber of User—Defined Scalars I 1 ¢,

Flux Function III ﬂ
Unsteady Function ﬂ

ok | cancel| Hep |

P P <1—Scalars are phase-specific
[D]" S| in multiphase models
Will be discussed later

Number of User-Defined Scalars [1 é‘

FloxFunctionogne -]
Unsteady Function [Gefautt z

Domains to solve in:

Scalard fmixqure El

Sealar | [
phase-1
Soalar |phase-2

pd

© 2006 ANSYS, Inc. Al rights reserved

ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS
UDF Mar 2007

www.fluentusers.com FLUENT

User Defined Scalars (2)

¢ User Defined Scalar convective dntherine_ ups_UNSTEADuns_time, cell,

time derivatives can be modified thread, i, apu, su)

DEFINE_UDS_FLUXflux, f, t, i) real physical_dt, vol, rho, phi_old;
{ physical_dt): RP_Get_Real("physical-

o time-step");

if (== 0) return 0,; vol = C_VOLUME(cell thread);

if NNULLP(THREAD_STORAGE(t,SV_FLUX))

return F_FLUX(f,t); rho = Rhod;
. *apu = -rho*vol /
return 0 physical_dt;/*implicit part*/
} hi_old =
C_STORAGE_R(cell,thread,SV_UDSI_M1(
—| User—Defined Scalars D
i rho*voI*}JhifoId/physicalfdt;/*expli
Humber of User-Defined Scalars I 1 = cit part*
}

Flux Function IE' ﬂ
Unsteady Function ﬂ

ok | cancel | Help |

© 2006 ANSYS, Inc. All rights reserved.

ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS
UDF Mar 2007

www.fluentusers.com FLUENT

User Defined Scalars (3)

¢ The Boundary Conditions for

the User Defined Scalar can be
specified asSpecified Flux e
or Specified Value

¢ The diffusivity for the User
Defined Scalar can be specified e
throughMaterial user- =
defined -diffusivity panel st | (oo
as a constant or as [|| —]
User-Defined Function B

S0 spoatavane |] “

s 7] "

Properties

ot [atat
[oes |

Viscosit Iquq/m—sym & Gancel Help
[trsseos |
e

ChargeiConte | bokle Clse W |

© 2006 ANSYS, Inc. All rights reserved.

ANSYS, Inc. Proprietary

© 2006 ANSYS, Inc. All rights reserved.

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

www.fluentusers.com FLUENT

User Defined Scalars (4)

& The User Defined Sca|atn'sDEFlNE_ADJUST(adjust_fcn,domain)
and their gradients can

used in UDF’s Thread *t;
int nt;

cell_tc;
face_tf;
int ns;
real p_dis =0,
/* Do nothing if gradient isn't allocated yet. */
if (! Data_Valid_P())return;
/* Compute power dissipated. */
thread_loop_c (t, domain)
if (FLUID_THREAD_P(t))
{
begin_c_loop_all (c,t)
{
C_UDSI(c,t,1) +=
K_EL*NV_MAG2(C_UDSI_G(c,t,0))*C_VOLUME(c,t);
}
end_c_loop_all (c, t)

}

© 2006 ANSYS, Inc. All rights reserved.

ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

www.fluentusers.com FLUENT

User Defined Memory (UDM)

¢ User-allocated memory
> Allow users to allocate memory (up to 500
locations) to store and retrieve the values of
field variables computed by UDF's (for =

User—Defined Memory
postprocessing and use by other UDFs) Number of User-Defined Mermory Locations 500 4
> Same array dimension and size as any ok | Cancel| _Help
variable
> UDMs are not solved by the solver = Contours
_ - Qptions Contours Of
> Numper of User I?gfmgd Memory i [tter Defnad lmory E
Locations is specified in the User-Definga| | soevaies ||~ 5
™ Auto Range
Memory panel _I CHip to Aange | Min e
> Accessible via macros S re ‘S ; |
: urfaces FEl
e Cell Va|UESC_UDM|(C,t,I) Levels Setup imeriorf:i et s
» Face valuest_UDMI(f t,i) Tl Bl [
. wall-1
> Saved to FLUENT data file ialled
Display | Compute Close Help

ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

www.fluentusers.com FLUENT

User Defined Memory (2)

DEFINE_ON_DEMAND(scaled_temp)
{
Domain *domain = Get_domain(1);
/* Compute scaled temperature store in user-defined
memory */
thread_loop_c(t,domain)
{
begin_c_loop(c,t)
{
temp = C_T(c,t);
C_UDMI(c,t,0)=(temp - tmin)/(tmax-tmin);
}
end_c_loop(c,t)
}
}

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

ol T 0l www.fluentusers.com FLUENT

Execute on Demand

¢ This provides a hook to execute| extern Domain *domain;
any set of calculation or /O #define SETMIN(a,b)((b)<(a)?(a=b):(a))
operations at will of the user whflgjefine SETMAX(a,b)((b)>(a)?(a=b):(a))
the solver is not iterating DEFINE_ON_DEMAND(scaled_temp)
¢ Executed instantaneously when

aCti_vated by user. thread_loop_c(t,domain)
¢ Define>User-Defined {
->Execute on Demand...

-~

real tmin=-1.e10, tmax=1.e10;
/* Compute min & max temperature */

begin_c_loop(c,t)
=] Execute On Demand {

wnctin print{_centroid ¥ SETMIN(min,C_T(c.0);
SETMAX(tmax,C_T(c.1);
}

end_c_loop(c,t)

Execulel Close | Help |

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

User Defined FURCHONE
for e '
Discrete PhaseViog&l

Advanced UDBJE
Modeling Course 4

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS
UDF Mar 2007

www.fluentusers.com FLUENT

DPM Macros (1)

¢ Tracked_particle *p DPM Datatype
¢ DPM tracks particles in Lagrangian frame
¢ Particle data at current position

v

P_DIAM(p) Particle diameter
P_VEL(p)[l] Particle Velocity

P_T(p) Particle Temperature
P_RHO(p) Particle density

P_MASS(p) Particle mass
P_TIME(p) Current time for particle
P_DT(p) Particle time step

P_LF(p) Particle liquid fraction
P_VFF(p) Particle volatile fraction

vV V ¥V V V V V

v

© 2006 ANSYS, Inc. All rights reserved.

NANSYS

FLUENT

Fluent User Services Center

Advanced FLUENT Training

UDF Mar 2007

www.fluentusers.com

DPM Macros (2)

¢ Values of particle properties at entry to curresit c

> P_DIAMO(p) Diameter

> P_VELO(p)[i] Velocity

> P_TO(p) Temperature
> P_RHOO(p) Density

> P_MASSO0(p) Mass

> P_TIMEO(p) Time

> P_LFO(p) Liquid fraction

¢ Values of particle properties at injection into dom

> P_INIT_DIAM(p) Diameter

> P_INIT_MASS(p) Mass

> P_INIT_RHO(p) Density

> P_INIT_TEMP(p) Temperature

> P_INIT_LF(p)

Liquid fraction

Advanced FLUENT Training

UDF

© 2006 ANSYS, Inc. All rights reserved.

Mar 2007

Fluent User Services Center

ANSYS, Inc. Proprietary

NANSYS

>

> P_DEVOL_SPECIES_INDEX(p) Devolatilizing species index in mixture

>

>

>

www.fluentusers.com

FLUENT

DPM Macros (3)

P_EVAP_SPECIES_INDEX(p)

P_OXID_SPECIES_INDEX(p)

P_PROD_SPECIES_INDEX(p) Combustion product species index in mixtufe

P_CURRENT_LAW(p)
P_NEXT_LAW(p)

Evaporating species index in mixture

Oxidizing species index in mixture

Current law index
Next particle law index

© 2006 ANSYS, Inc. All rights reserved.

ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

www.fluentusers.com FLUENT

DPM Macros (4)

¢ Material Properties for particles

> P_MATERIAL(p) Material pointer for particles

> DPM_SWELLING_COEFFI(p) Swell coefficient for devolatilization
> DPM_EMISSIVITY(p) Particle radiation emissivity

> DPM_SCATT_FACTOR(p) Particle radiation scattering factor

> DPM_EVAPORATION_TEMPERATURERyaporation temperature
» DPM_BOILING_TEMPERATURE(p) Boiling temperature

> DPM_LATENT_HEAT(p) Latent Heat

> DPM_HEAT_OF_PYROLYSIS(p) Heat of pyrolysis

> DPM_HEAT_OF_REACTION(p) Heat of reaction

> DPM_VOLATILE_FRACTION(p) Volatile fraction

> DPM_CHAR_REACTION(p) Char fraction

> DPM_SPECIFIC_HEAT(p, t) Specific Heat at temperature t

© 2006 ANSYS, Inc. All rights reserved. -! ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

www.fluentusers.com FLUENT

DPM Functions (1)

¢ The following functions can be modeled:
> Body force - custom body forces on the particles

> Drag - user defined drag coefficient between
particles and fluid

> Source Terms - access particle source terms

» Output - user can modify what is written out to the
sampling plane output

> Erosion - called when particle encounters
“reflecting” surface

> DPM Law - custom laws for particles

> Scalar Update - allows users to update a scalar every
time a particle position is updated

> Switch - change the criteria for switching betweanda

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

www.fluentusers.com FLUENT

DPM Functions (2)

> DEFINE_DPM_BODY_FORCE Body force

> DEFINE_DPM_DRAG Drag

> DEFINE_DPM_SOURCE Source terms

> DEFINE_OUTPUT Output

> DEFINE_DPM_LAW Custom law

> DEFINE_DPM_EROSION Erosion

> DEFINE_DPM_INJECTION_INIT Initialize injections
> DEFINE_DPM_SCALAR_UPDATE Update scalars

> DEFINE_DPM_SWITCH Switch laws

* Note: the arguments to these functions are described in the UDF

manual posted in http://www.fluentusers.com/fluenté/doc/ori/html/udf/main_pre.htm

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

www.fluentusers.com FLUENT

DPM Functions (3)

¢ The function shown models a custom law
& The parameter p is a pointer to data structurgpef Tracked Particle

#include "udf.h"
#include "dpm.h"
DEFINE_DPM_LAYEvapor_Swelling_Law, p, ci)
{

real swelling_coeff = 1.1;

/*first, call standard evaporation routine to calc ulate mass and
heat transfer */

Vaporization_Law(p);

/* compute new particle diameter and density */

P_DIAM(p) = P_INIT_DIAM(p)*(1. + (swelling_coeff - 1)*
(P_INIT_MASS(p) P_MASS(p))/
(DPM_VOLATILE_FRACTION(p)*P_INIT_MASS(p)));

P_RHO(p) = P_MASS(p) / (3.14159*P_DIAM(p)

*P_DIAM(p)*P_DIAM(p)/6);

P_RHO(p) = MAX(0.1, MIN(1e5, P_RHO(p)));

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center

UDF Mar 2007

www.fluentusers.com

ANSYS

FLUENT

DPM Functions (4)

¢ The law is activated through
Define =»Models =»Dispersed
Phase =»Injections...Create

¢ The Set Injections Properties
panel comes up where Custom i
activated under Laws

¢ This brings up the Custom Laws

panel where the user can specif'
the appropriate law

Setlnjection Properties

_maecunn

Injection Type
single lid

particle Type

~ Inert

Point Properties

X-Position (m)

Y-Position (m)

X-Velocity (m/s) J

Laws

4 custom

¥ second taw | |

[Third Law

e [Firunhia

¥ Fiteh Law

i ¥ st taw

Default 7 switching

© 2006 ANSYS, Inc. Al rights reserved

ANSYS, Inc. Proprietary

UDEFs for .
Multiphase'Elo

Advanced UDE
Maodeling CourseE 44

© 2006 ANSYS, Inc. Al rights reserved.

Advanced FLUENT Training Fluent User Services Center

UDF Mar 2007 www.fluentusers.com

Recap: Single Phase Data Structure

ANSYS, Inc. Proprietary

NNSYS

FLUENT

Wall
Solid-1
. Fluid-1
Inlet Fluid-2 Porous
. Medium)
Domain
of]
Analysis Solid-2

. Outlet

Corresponding
Data structure

Domain

Threads

© 2006 ANSYS, Inc. All rights reserved.

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

www.fluentusers.com FLUENT

Data Structure for Multiphase Models

¢ Data Structure in multiphase models involweltiple domains

» Super DomainThis is the top-level domain contains all phasgependent and
mixture data: geometry, connectivity, property

> Sub-domains (phase domainEach phase has a sub-domain that inherits the
mixture-specific data and maintains the phaseipeata

> Interaction DomainTo activate the phase interaction mechanisms

Sub-Domains Sub-Threads Interaction Domain

Secondary Phase
Domains

Wall ¥ solid-2

Fluid-2 Inlet
Outlet
Porous

Medium Fluid-1

Primary Phase
Domain

Solid-1

Threads

Super
Domain

© 2006 ANSYS, Inc. All rights reserved.

ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

www.fluentusers.com FLUENT
The Threads in Multi-Domains

¢ The mixture:

> In single-phase, a mixture represents the sumall/grespecies
> In multiphase it represents the sum over allgthases
¢ This distinction is important
> Also, the code will later be extended to multiphaséti-component
fluids (where, for example, phase could be a mixture of species)
¢ Thread data structures:
» Threads must be associated with the super domdimalasub-domains

» For each cell (or face) thread of the super dontbare is a corresponding
cell (or face) thread for each sub-domain

» Some of the information defined in one thread efshper domain is shared
with the corresponding threads of each of the subains

» Threads associated with the super domain are eefféoras super-threads

» Threads associated with the subdomain are refésrad phase-level threads
or sub-threads

ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

www.fluentusers.com FLUENT

The Domain-lds and The Thread-lds

=
Phase Type
¢ For multiphase models, the domains need to be phaze 1 [prmare-phase
. ra 1A5€ - secondary-phase
identified by unique Ids (including Interaction daim) - e
. . . . hase-4
¢ Domain_ID of the super (mixture) domain is always * phase§
¢ Domain_ID s arenot necessarily orderesgquentially ' D
& Therefore, to access the phase domains, each phase Iuteraction.| | 4
also has phase_domain_index — = =
> ‘0’ for the primary phase

> ‘N 1" for the last secondary phase
> phase_domain_index is used in UDFs to retrieve phase thread pointers

» Useful when you want to access data for anothesgfram an UDF for a
particular phase

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

www.fluentusers.com FLUENT

Domain Looping Macro

¢ sub_domain_loop(subdomain, mixture_domain, phase_in dex)
> Loops over all phases (sub-domains) in a mixture
> mixture_domain is already available
» subdomain , phase_index are defined locally, initialized within the mag

¢ An Example for the loopDomain_ID and thephase_domain_index

DEFINE_ADJUST (print_id, mix_domain)

{

Domain *s_d; /*subdomain pointer, locally defined*/

int p_d; /* loop counter for phase_domain_index, locally def ined*/
int p_d_id; /* mix_domain is available*/

sub_domain_loop(s_d, mix_domain, p_d)

p_d_id = DOMAIN_ID(s_d);
Message("the phase domain id = %d and the phase
domain index = %d\n", p_d_id, p_d);

'o

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

www.fluentusers.com FLUENT

Thread Looping Macro

¢ sub_thread_loop(subthread,mixture_thread,phase_inde X)

» Loops over all threads in a mixture
> mixture_thread is already available
> subthread & phase_index are defined locally, initialized within the macro

An Example:

/*compute bulk density of mixture and store it in a UDM*/
DEFINE_ADJUST(calc_den, mix_domain)
{ Thread *mix_thread;
thread_loop_c(mix_thread,mix_domain)
{cell_tc;
begin_c_loop(c,mix_thread)
{ Thread *s_t;

int p_d_i;
C_UDMI(c,mix_thread,0) = 0;
sub_thread_loop (s_t, mix_thread, d_i)

C_UDMI(c,mix_thread,0) += C_VOF(c,s_t)*C_R(c,s_t);
end_c_loop(c,mix_thread)

m

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

www.fluentusers.com FLUENT

Other Looping Macros

¢ mp_thread_loop_c(cell_thread, mixture_domain, pt)
> cell_thread is a pointer to mixture thread in th@xture_domain
> mixture_domain s already assumed to be available
> pt is an array of thread pointers
¢ mp_thread_loop_f(face_threads, mixture_domain, pt)
> face_threads is a pointer to face thread in théxture_domain
> mixture_domain s already assumed to be available
> pt is an array of thread pointers pointing to the pHasel threads
An Example:
DEFINE_ADJUST (print_vof, mix_domain)
{ Thread *mix_thread;
Thread **pt;
mp_thread_loop_c (mix_thread, mix_domain, pt)
{cell_tc;
begin_c_loop(c, mix_thread)
Message(“cell volume fraction = %f\n”,C_VOF(c,pt[0]));
end_c_loop(c, mix_thread)}}

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

www.fluentusers.com FLUENT

Access the Right Thread / Domain

¢ While writing UDF’s, it is important that the rigthiread / domain is accessed
» C_R(cell,thread) will return
« The mixture density ithread is the mixture threadr
 The phase densities if it is tiphase thread

¢ In general the type ofDEFINE macro determines which thread or domain
(mixture or phase) gets passed to your UDF

> DEFINE_INIT and DEFINE_ADJUSTj unctions always get passed
the domain structure associated with the super doma

> DEFINE_ON_DEMANfnctions are not passed any domain structures

> If your UDF is not explicitly passed the pointer tioe thread or domain
required, then you can use a multiphase-specifityunacro to retrieve it

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007 www.fluentusers.com FLUENT

Superthreads and Phasethreads

Each Thread is also in a hierarchy that matches that of the domains
The “superthreads” are where the “mixture” of the phases is stored and
so are often called the “mixture threads”

« Shared values such as the cell’'s geometry data are stored in the
superthread

+ Each Phase has its own set of threads known as a “subthreads” or
“phase threads”

superthread

. |
POthreads |P1threads |P2threads Phase Subthreads
1 1 t 1 + 1

Phase Thread Interactions

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

www.fluentusers.com FLUENT

Access Variables External to a UDF

¢ Get_Domain(Domain-ID)
» Usage: Domain *domain=Get_Domain(n);
‘n’ is theDomain-ID , as appear in Define-Phase GUlis always ‘1’ for
the mixture domain
¢ DOMAIN_ID(domain)
> Usage: int domain_id = Domain_ID(subdomain);
‘subdomain ' is the pointer to a phase-level domadgmain_id upon
return is the same integer ID displayed in the Gkler Define-Phases
panel
¢ DOMAIN_SUB_DOMAIN(mixture_domain,ph_domain_index)
> Usage: Domain *mixture_domain;
Domain *subdomain = DOMAIN_SUB_DOMAIN
(mixture_domain, phase_domain_index);
returns the phase pointer subdomain forghase_domain_index

© 2006 ANSYS, Inc. All rights reserved.

ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

www.fluentusers.com FLUENT

Access Variables External to a UDF (2)

¢ THREAD_SUB_THREAD(mixture_thread,ph_domain_index)

> Usage:
int ph_d_index = 0; [* primary phase index is 0 */
Thread *mix_th; [* mixture-level thread pointer */

Thread *subth=THREAD_SUB_THREAD(mix_th, ph_d_index)
returns the phase-level thread pointer for thergpple_d_index

¢ THREAD_SUB_THREADS(mixture_thread)

> Usage:
Thread *mixture_thread;
Thread **pt; [* initialize pt: pointer array */

pt = THREAD_SUB_THREADS(mixture_thread)

returns the pointer arrapt , whose elements contain pointers to phase-level
threads (subthreads)

© 2006 ANSYS, Inc. All rights reserved.

ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

www.fluentusers.com FLUENT

Access Variables External to a UDF (3)

¢ THREAD_SUPER_THREAD(subthread)
> Usage:

Thread *subthread; [*pointer to a phase thread within the mixture*/
Thread *mix_thread=THREAD_SUPER_THREAD(subthread)

Given a phase thread pointer, it returns the stipead (mixture-thread) pointer
¢ DOMAIN_SUPER_DOMAIN(subdomain)
> Usage:
Domain *subdomain; [*pointer to a phase domain within the mixture*/
Domain *mixture_domain = DOMAIN_SUPER_DOMAIN(subdom ain)

It returns the mixture domain pointer

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

www.fluentusers.com FLUENT

Access Variables External to a UDF (4)

+ PHASE_DOMAIN_INDEX(subdomain)

> Usage:
Domain *subdomain; [*points to a phase domain within the mixture*/
int phase_domain_index = PHASE_DOMAIN_INDEX(subdoma in)

returns the phase domain index for the phase dofsabdomain) pointer;
It is an integer that starts with ‘0’ for the prirggrshase and is incremented
by one for each secondary phase

¢ THREAD_DOMAIN(thread)
> Usage:
Thread *subthread; /*points to a phase thread within the mixture*/
Thread *mix_thread=THREAD_SUPER_THREAD(subthread)
Domain *subd=THREAD_DOMAIN(subthread); [*points to a phase domain*/
Domain *mixd=THREAD_DOMAIN(subthread); [*points to mixture domain*/

returns domain pointer for tharead

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007 www.fluentusers.com FLUENT

Exchange Macros(1)

E|
org | L | o |
[=etia [wser-dofined 9] e f
¢ DEFINE_EXCHANGE_PROPERTY
(name, c, mixture_thread,
second_column_phase_index,
first_column_phase_index)
> This macro is used to specify custom drag & \
lift coefficients for the Eulerian multiphase moc o | LI_I
> mixture_thread points to the mixture thread
. . . . First Second
> c is the index of a cell on thaixture_thread Column Column
» first_column_phase_index andsecond_column_phase_index are

integer identifiers corresponding to the pair oigbs in your multiphase flow

> The identifiers correspond to the phases thatelezted in the
Phase-Interaction panel in the GUI

» The UDF returns the real value of the lift or dcagfficient

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007 www.fluentusers.com FLUENT

Exchange Macros(2)

¢ DEFINE_VECTOR_EXCHANGE_PROPERTY(name, c,mixture_thr ead,
second_column_phase_index,first_column_phase_index,
vector_result)
» This macro is used to specify custom slip velosif@ multiphase Mixture model
> mixture_thread points to the mixture thread
> c is the index of a cell on thaixture_thread
> first_column_phase_index andsecond_column_phase_index are
integer identifiers corresponding to the pair oAgbs in your multiphase flow
> The identifiers correspond to the phases thatelezted in the
Phase-Interaction panel in the GUI
> The UDF is passed the real pointer to the slipaiglovectorvector_result ,
and it will need to set the components of the slip velocity vector

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007 www.fluentusers.com FLUENT

Exchange Macros(3)

An Example :

#include "udf.h”
#include "sg_mphase.h"
DEFINE_VECTOR_EXCHANGE_PROPERTY (custom_slip, ¢, mix ture_thread,

second_column_phase_index, first_column_phase_index , vector_result)
{ real grav[2] ={0., -9.81};
real K =5.e4;
real pgrad_x, pgrad_y;
Thread *pt, *st;/* thread pointers for primary & se condary phases*/
pt = THREAD_SUB_THREAD(mixture_thread, second_colum n_phase_index);
st = THREAD_SUB_THREAD(mixture_thread, first_column_ phase_index);
/* Now the threads are known for primary (0) & seco ndary(1) phases */

pgrad_x = C_DP(c, mixture_thread)[0];

pgrad_y = C_DP(c, mixture_thread)[1];
vector_result[0] = -(pgrad_x/K)+(((C_R(c,st)-C_R(c, pt))/K)*grav[0]);
vector_result[1] = -(pgrad_y/K)+(((C_R(c,st)-C_R(c, pt))/K)*grav[1]);

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

www.fluentusers.com FLUENT

Cavitation Macros

¢ DEFINE_CAVITATION_RATE (name,c,t,p,rhoV,rhoL,vofV,
p_v,n_b,mdot)
¢ You can use this macro to model the creation obvalpie to pressure tension in a
multiphase flow

> Itis applied in théJser-Defined-Function-Hooks - Cavitation-
Mass-Rate-Function panel

> t is a pointer to the mixture-level thread
c is the index of a cell on the thread pointed td by

> The remaining arguments are real pointers to theviong data:

» Shared pressur@), vapor densityrhoV), liquid density(rhoL), vapor volume
fraction (vofV), vaporization pressur@_v), number of bubbles per unit volume
(n_b), and rate of vapor formatiafmdot)

> The UDF sets the value referenced by the real @oimdot, to the cavitation rate

\!

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007 www.fluentusers.com FLUENT

Miscellaneous: Multiphase Macros

¢ Phase diameter
» C_PHASE_DIAMETER(c,phase_thread)

¢ Phase Volume-fraction
> C_VOF(c,phase_thread)

¢ Phase velocity gradients
» C_U_G(c, phase_thread)
> C_V_G(c, phase_thread)
» C_W_G(c, phase_thread)

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007 www.fluentusers.com FLUENT

Miscellaneous : Multiphase Macros

¢ Phase volume fraction gradien®: VOF_G(c,phase_thread)
> Memory needs to be allocated and gradients nekd &xplicitly calculated

Domain *pDomain = DOMAIN_SUB_DOMAIN(domain,P_PHAS E);

Alloc_Storage_Vars (pDomain,SV_VOF_RG,SV_VOF_G,SV _NULL);
Scalar_Reconstruction(pDomain,SV_VOF,-1,SV_VOF_RG, NULL);
Scalar_Derivatives (pDomain,SV_VOF,-1,SV_VOF_G,SV _VOF_RG,

Vof_Deriv_Accumulate);

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

www.fluentusers.com FLUENT

Miscellaneous: Multiphase Macros

¢ Check if a given thread is a “super” or “sub” thread

THREAD_SUPER_THREAD(thread) is NULL for mixture thread,
and notNULL for phase threads

> mixture :if (NULLP (THREAD_SUPER_THREAD(thread)))
> phase if ((NULLP (THREAD_SUPER_THREAD(thread)))

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

FLUENT;

Advanced UDE

Maodeling CourseE 44

© 2006 ANSYS, Inc. Al rights reserved.

Advanced FLUENT Training

Fluent User Services Center
UDF Mar 2007

www.fluentusers.com

Parallel Fluent

Cortex ——

I
o
[0}
2

(%iterate 5)
Print messages

“(%iterate 5)"

ANSYS, Inc. Proprietary

NNSYS

FLUENT

Compute-Node-1

Compute-Node-0

Print messages

¢ Compute nodes labeled consecutiv

starting at 0 2 f%/
o
¢ Host labeled 999999 ’&%%
¢ Host connected to Cortex %%‘9"
&

¢ Each compute node (virtually)

Compute-Node-2

connected to every other compute node

\ Compute-Node-3

© 2006 ANSYS

Advanced FLUENT Training Fluent User Services Center

UDF Mar 2007

www.fluentusers.com

fluent6.x Directory

fluent6.x
1
src — lib Architecture
*.h
makefiles l
2d 2d_host 2d_node
fluent-version fluent-version fluent_net -version

fluent_smpi-version
fluent_vmpi-version
fluent_pvm -version

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

www.fluentusers.com FLUENT

Intro to Compiler Directives

¢ “#if "is a compiler directive (similar to “#define ")
¢ A“#endif " is used to close a “#if

#if RP_NODE /* Compute-Node */
#if RP_HOST /* Host */
#if PARALLEL /* Equivalentto #if RP_HOST||RP_NODE* /
#if IPARALLEL /* Serial */
#if RP_HOST
Message(“I'm the Host process \n");
#endif
#if RP_NODE
Message(“I'm the Node process number:%d \n”, myid);
#endif

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

© 2006 ANSYS, Inc. All rights reserved.

Advanced FLUENT Training Fluent User Services Center I\NSYS

ol T 0l www.fluentusers.com FLUENT

Partitioning (1)

¢ Domain Decomposition Technique: Splits the domain across Compute
Nodes

¢ Because Fluent's algorithms expect a cell to be on both sides of an
interior face, copies of the neighboring partition’s cells are kept on each
Node

¢ Compute Node 0 has copies of the cells on the other side of all partition
faces and Compute Node 1 has corresponding cell copies from Node 0

Compute Node O Compute Node 1

Domain Decomposition Distribution acr oss Compute Nodes

ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

www.fluentusers.com FLUENT
Partitioning (2)

The main cells of the partition are designatedetiiar” cells and the additional
copied cells from other Compute Nodes are desigrigeegrior” cells
The Partition Boundary Faces are a special typetefior face

Compute Node 0 Surface Boundary
Zone Face

Partition Boundary Face

@ Interior Face

Exterior Cell

Interior Cells

ANSYS, Inc. Proprietary

© 2006 ANSYS, Inc. All rights reserved.

Advanced FLUENT Training Fluent User Services Center I\NSYS

ol T 0l www.fluentusers.com FLUENT

Partitioned Thread Loop (1)

begin_c_loop(c,t)
{
}

end_c_loop(c,t)
In parallel use, above loop construct loops thrailghExterior cells too
Use begin_c_loop_int(c,t) in all UDFs that are to be parallelized:
begin_c_loop_int(c,t)
{
}

end_c_loop_int(c,t)
This loop excludes the exterior cells to replicsedalbegin_c_loop(c,t)

Another loop construct loops through the exteretsconly :
begin_c_loop_ext(c,t)

{
}

end_c_loop_ext(c,t)
¢ ltisrarely used in UDFs and does nothing if cdegin serial version

L IR 2

L R 4

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

ol T 0l www.fluentusers.com FLUENT

Partitioned Thread Loop (2)

¢ Similar loops exist for faces:
begin_f_loop_all(f,t)

{.}
end_f_loop_all(f,t)

begin_f_loop_int(f,t)
{1}
end_f_loop_int(f,t)
¢ But you can simply use the standard loop and check to see if the face is
“allocated” to this Thread using:
begin_f_loop (f,t)

if(PRINCIPAL_FACE_P(f 1))
{1}

end_f_loop(f,t)

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

ol T 0l www.fluentusers.com FLUENT

Inter-Process Communication (1)

« Each compute node maintain local cache of indisfidariables

¢ Synchronization or make global reduction of suatadnvolves
communication in a particular order

« Consider the simple operation of passing a usénekkcortex
parameter that is set using scheme but is used/DFa

Serial Code Combined (Serial & Parallel) Code
DEFINE_INIT(set_temp,domain) DEFINE_INIT(set_temp,domain)
{
real i_temp; real i_temp;
i_temp = RP_Get_Real(“user-temp”); #if IRP_NODE /* i.e. serial or host */
begin_c_loop(c,t) i_temp = RP_Get_Real(“user-temp”);
C_T(c,t)=i_temp; #endif
end_c_loop(c,t) host_to_node_real_1(i_temp);
} #if IRP_HOST /* i.e. serial or node */

begin_c_loop_int(c,t)
C_T(c,t)=i_temp;
end_c_loop_int(c,t)
#endif
}

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

ol T 0l www.fluentusers.com FLUENT

Inter-Process Communication (2)

* To ensure same code to work for serial and panadiedions, negated compiler
directives are mostly used:

#if IRP_NODE /*i.e. serial or host */
#if IRP_HOST /*i.e. serial or node */
#if IPARALLEL /* i.e. serial only */

* The macro host_to_node_real_1(i_temp); " is defined as &end command
in the Host version, Receive command in the Compute Node versions and does
Nothing in the Serial version

® The reciprocal command t@st_to_node_real_1() is
node_to_host_real_1();

® But this only sends the valuetefnp from Node0 to the Host

* The formal broadcasting and host communicationbeadone as below:

temp = PRF_GRSUM1(temp); /*This sums up temp over all nodes*/
/*All nodes now have temp=sum */
node_to_host_real_1(temp);/*only NodeO sends data t o Host *

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

www.fluentusers.com FLUENT

Global Reduction

This combination process is called “Reduction” arete¢hare a number of ways to
reduce your data depending on what you want:

1) If you want the total value over all the Nodgsl use a Summation Reduction
2) If you want the Max or Min over all the NodesuwsHigh or Low Reduction
3) If you want a logical test over all nodes useédad or Or Reduction

There are different macros depending on what ga@you're sending:

count =PRF_GISUM1(count); /* Total Integer co unt */
min_temp = PRF_GRLOWZI1(min_temp);/* Global minimum * /
PRF_GLOR(sonic_tests, 3, work); /* Arrays can be re duced too,
needs a work array */
PRF_GRSUM4(v_x,v_y,v_z,v_mag); /* 4 vars are reduc ed at a time */

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

www.fluentusers.com FLUENT

Example UDF (1)

* Find totals and averages of a property over alctils
* Purpose is to write an UDF that works for both Ralrand Serial solvers

#include "udf.h"

DEFINE_ON_DEMAND(av_pres_in_thread)

{int thread_id;

real vol_sum=0.0, pres_sum=0.0;

#if IRP_HOST /* serial or node */
cell_tc; Thread *t;

#endif /* IRP_HOST */

#if IRP_NODE /* serial or host */
thread_id=RP_Get_Integer("udf/av_thread_id");

#endif /* IRP_NODE */

host_to_node_int_1(thread_id); /* Passes on serial */
#if IRP_HOST /* serial or node */

t= Lookup_Thread(Get_Domain(1), thread_id);

begin_c_loop_int(c,t) /* Internal cells only*/

{vol_sum +=C_VOLUME(c,t);
pres_sum += C_P(c,t) * C_VOLUME(c,t);}
end_c_loop_int(c,t)
#endif /* IRP_HOST */ /* Continued */

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

www.fluentusers.com FLUENT

Example UDF (2)

#if RP_NODE
Message("Sub totals on Node %d: %f,%f\n",myid ,
pres_sum ,vol_sum);
#endif /* RP_NODE */
vol_sum =PRF_GRSUM1(vol_sum);
pres_sum = PRF_GRSUM1(pres_sum);
#if RP_NODE
Message("Reduced vals Node %d: %f,%f\n",myid ,
pres_sum ,vol_sum);
#endif /* RP_NODE */
node_to_host_real_2(vol_sum,pres_sum);
#if IRP_NODE /*i.e., host or serial*/
Message("Avg. pressure over Thread %d is %f Pa\n", thread_id,
pres_sum/vol_sum);
#endif /* IRP_NODE */
}

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

ol T 0l www.fluentusers.com FLUENT

MessageO ()

A function that can be run on nodeO that printeatly to
the cortex window
» Also works for serial processes

MessageO("Average pressure over Thread %d ",thread_ id);
Message0("is %f Pa\n",pres_sum/vol_sum);

* Note the exact similarity of the function “Messageith
Message and printf commands

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

www.fluentusers.com FLUENT

Parallel File Output

¢ In a parallel session, file I/O can be done oniptigh theNode_Zero

Example:
#if PARALLEL
if I_AM_NODE_ZERO_P)
{ sprintf (ntim,”outfile-%d", ntime);
if (fd == NULL) [*Open a new file */
{fd = fopen(ntim,"w");}
/* if new file “open” failed, try to append */
if (fd == NULL) [* reopen the file in append-mode*/
{fd = fopen(ntim,"a");
Message("Appending to existing file: %s", ntim);
fprintf(fd,"\nAppend begins at: %f \n", f_time);}

}
#endif

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Functions/Macros |

Advanced UDE
Maodeling CourseE 44

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS
UDF Mar 2007

www.fluentusers.com FLUENT

Trigonometric Functions

¢ double acos (double x); returns the arc-cosine of x

¢ double asin (double x); returns the arc-sine of x

¢ double atan (double x); returns the arc-tangent of x

+ double atan2 (double x, double y); returns the arc-tangent of x/y

¢ double cos (double x); returns the cosine of x

¢ double sin (double x); returns the sine of x

¢ double tan (double x); returns the tangent of x

+ double cosh (double x); returns the hyperbolic cosine of x
¢ double sinh (double x); returns the hyperbolic sine of x

¢ double tanh (double x); returns the hyperbolic tangent of x

© 2006 ANSYS, Inc. Al rights ed - ANSYS, Inc. Proprietary

Advanced FLUENT Training

UDF Mar 2007

Fluent User Services Center

www.fluentusers.com

Miscellaneous Math-Functions

returns the square root of x

smallest integer not less than x
largest integer not greater than x

¢ double sqrt (double x);

¢ double pow (double x, double y); returns X

¢ double exp (double x); returns &

¢ double log (double x); returns In(x)

¢ double log10 (double x); returns Iny(x)

+ double fabs (double x); returns |x|

¢ double ceil (double x);

¢ double floor (double x);

¢ The macrdJNIVERSAL_GAS_CONSTAN®@turns the value of the

universal gas constant (8314.34), which is express&I units of J/Kmol-K

¢ The macrdV_PI returns the value af

© 2006 ANSYS, Inc. All rights reserved.

Advanced FLUENT Training
UDF Mar 2007

Fluent User Services Center

www.fluentusers.com

ANSYS, Inc. Proprietary

Standard I/0O Functions

¢ useMessage instead ofprintf

in compiled UDFs (UNIX only)

Message ("Volume integral: %g\n", sum_vol);

¢ FILE *fopen (char *filename, char *type);

¢ intfclose (FILE *fd);

¢ int fprintf (FILE *fd, char *format, ...);

¢ int printf (char, *format, ...);

¢ intfscanf (FILE *fd, char *format, ...);
See your system manual pages for

more details

Note that for parallel runs, the /O
macros need to be different

© 2006 ANSYS, Inc. All rights reserved.

opens a file

closes a file

formatted print to a file
print to screen

formatted read from a file

Example:
FILE *fd;
real f1, f2;
fd = fopen(“data.txt”,’r");
fscanf(fd, “%f %f",&f1,&f2);
fclose(fd);

ANSYS, Inc. Proprietary

NANSYS

FLUENT

NANSYS

FLUENT

Advanced FLUENT Training Fluent User Services Center I\NSYS

ol T 0l www.fluentusers.com FLUENT

Special Macro’s

¢ cxboolean Data_Valid_P() Equalsi if data is available,
0 if not
Usage: if('Data_Valid_P())return;
¢ cxboolean FLUID_THREAD_P(t0) true if thread tO fluid thread
¢ cxboolean SOLID_THREAD_P(t0) true if thread t0 is solid thread
¢ cxboolean BOUNDARY_FACE_THREAD_P(t0) true if thread tO is boundary thread
& NULLP(T_STORAGE_R_NV(t0, SV_UDSI_G(p1)))

- Checks for storage allocation of user defined ssala

¢ CURRENT_TIME Real current flow time (in seconds)
¢ CURRENT_TIMESTEP Real current physical time step size (in sec)
¢ PREVIOUS_TIME Real previous flow time (in seconds)
¢ PREVIOUS_2_TIME Real flow time two steps back in time (in sec)
¢ N_TIME Integer number of time steps

¢ N_ITER Integer number of iterations

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

www.fluentusers.com FLUENT

Miscellaneous: Vector Utilities

¢ ND_NDn the declaration of a vector or matrix standstffier actual fluent
dimension (2D / 3p
¢ X[ND_ND] is equivalent to:
> 2D: X[2]
> 3D: X[3]
¢ NV_MA&omputes the magnitude of a vectsfiND_ND]
¢ NV_MAG(x) isequivalent to:
> 2D: sqrt(x[0]*x[0] + x[1]*X[1]);
> 3D: sqrt(x[0]*x[0] + x[1]*x[1] + X[2]*X[2]);
¢ NV_MAGZomputes the sum of squares of vector components
¢ NV_MAG2(x) is equivalent to:
> 2D: (X[0]*X[0] + x[1]*X[1]);
> 3D: (X[0]*X[0] + x[1]*x[1] + x[2]*X[2]);

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

ol T 0l www.fluentusers.com FLUENT

Miscellaneous: Vector Utilities

¢ ND_SUMomputes the sum &fD_NDarguments
¢ ND_SUM(x,y,z) is equivalent to:
> 2D:x+Yy;
> 3D:x+y+z
¢ ND_SETgenerate®N\D_NDassignment statements
» 2D: ND_SET(u,v,C_U(c,1),C_V(c,1)) is equivalent to:
« u=C_U(c,t);
« v=C_V(c,t);
> 3D: ND_SET(u,v,w,C_U(c,t),C_V(c,t),C_W(c,t)) is equivalent to:
e u=C_U(c,t);
e v=C_V(c,t);
« w=C_W(c,1t);

ANSYS, Inc. Proprietary

© 2006 ANSYS, Inc. All rights reserved.

Advanced FLUENT Training Fluent User Services Center I\NSYS

ol T 0l www.fluentusers.com FLUENT

Miscellaneous: Vector Utilities

¢ NV_Vperforms an operation on two vectors
> NV_V(a, =, x);
> a[0] = x[0]; a[1] = x[1]; etc.
> Note that if you use = instead of= in the above equation, then you get
a[0]+= x[0]; etc.
¢ NV_VVis a vector operator . The operation that is peréa on the elements
depends upon what is used as an argument in pldke ® signs
> NV_WV(a, =, x, +,y) /* The ‘+' symbol can be replaced by (-, /H)
> 2D: a[0]= x[0]+y[0], a[1]= x[1]+Y[1];
> 3D: a[0]= x[0]+y[0], a[1]= x[1]+y[1], a[2]= x[2]+Y[2];

ANSYS, Inc. Proprietary

© 2006 ANSYS, Inc. All rights reserved.

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

www.fluentusers.com FLUENT

Miscellaneous: Vector Utilities

¢ NV_V_VSadds a vector to another which is multiplied bgalar
> NV_V_VS(a,=, x,+,y,*0.5);
> 2D: a[0]=x[0]+(y[0]*0.5), a[1]=x[1]+(y[1]*O.5);
> Note that+ sign can be replaced by/, or *, and'*’ sign can be replaced by
¢ NV_VS_VSadds a vector to another which are each multigdied scalar
> NV_VS_VS(a,=x,*2.0,+y,*,0.5);
> 2D: a[0]=(x[0]*2.0)+(y[0]*0.5),
a[1]=(x[1]*2.0)+(y[1]*0.5);
> Note that+ sign can be used in place-of, or /, and*' sign can be replaced by

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

ol T 0l www.fluentusers.com FLUENT

Miscellaneous: Vector Utilities

2

The dot products of two sets of vector or compaosient
¢ ND_DOT(x,y,z,u,v,w) is equivalent to:
> 2D: (X*u+y*v);
> 3D: (X*uty*v+z*w);
¢ NV_DOT(x,u) is equivalent to:
> 2D: (X[OT*u[O]+x[1]*u[1]);
> 3D: (X[O]*u[O]+X[1]*u[1]+Xx[2]*u[2]);
¢ NVD_DOT(x,u,v,w) is equivalent to:
> 2D: (X[O]*u+x[1]*V);
> 3D: (X[O]*u+x[1]*v+Xx[2]*W);
¢ NV_CROSS(a,x,y) is available for3D only:
> It returns the cross product of vectarandy in the new vectoa

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training

Fluent User Services Center I\NSYS
UDF Mar 2007

www.fluentusers.com FLUENT

Closure

& All UDF-s must be written in Sl units

UDF-s open up a virtually endless opportunity tteexl the modeling
capabilities of the basic FLUENT code

¢ Details of the examples and all working macros &apaeters are
available in the UDF manual at Fluent User Servicester

© 2006 ANSYS, Inc. All rights reserved.

ANSYS, Inc. Proprietary

Appendlx'
C-Programming)

Advanced UDE
Maodeling CourseE 44

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS
UDF Mar 2007

C and UDF

www.fluentusers.com FLUENT

¢ Many UDFs can be written and used with some limited
knowledge of ‘C’

¢ This presentation will introduce only essentialtsyrand
aspects

¢ In general, Macros (hook-ups) are available foeasimng
various locations in the code during the iterations

¢ FLUENT has a large number of internal macro-s aamibgbles
that are not accessible from UDFs (Primarily duedpyright
reasons)

¢ Itis advisable to check with your support engiregout the
general concept/task that you want to model usibg U

¢ More elaborate knowledge of ‘C’ helps reducing UDF
development and debugging time but need not netlyssa
provide any extended capabilities

© 2006 ANSYS

Advanced FLUENT Training Fluent User Services Center I\NSYS

ol T 0l www.fluentusers.com FLUENT

A Brief Introduction to ‘C’

C functions

C data types

» Pointers and arrays

Expressions and statements

C arithmetic and logical operators
» Control flow

C preprocessor directives

v

v

v

v

v

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

ol T 0l www.fluentusers.com FLUENT

The Basic Form of a C Function

/*A simple C function*/ I* Comments are delineated by the character sequence *
I* comments can be placed anywhere in a C listing
use comments liberally to document your UDFs */

#include “udf.h” I* A preprocessor directive for including files *
#define P1 3.14159 I* A preprocessor directive for macro substitution *

real a = 1.2345; I* Global scope: variables defined outside the function body for use
by all functions which follow the definition *
int my—function(int X) I* Function declaration (integer type) #
{ I* C functions are enclosed by curly braces ({...}) #
I* All C statements must end with a semicolon (;) *

int Y.z, I* Local scope: Declare data type for variables y, z variables

defined within the function body are local to the function *
y =11, I*Sety=11)
Z = a*(x+y)*Pl; /* Compute z #
printf(“z = %d”,z); I* Print output to screen #
return z; I* Return integer value *
} I* Right curly brace closes body of function *

¢ If a function is defined with a specific type, itaild return a value of the same
type (using the return statement)

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

ol T 0l www.fluentusers.com FLUENT

Compilers

¢ C compilers include a library of standard math, E@d utility functions
which can be used in your C code

¢ Common I/O functions

> scanf (...) - formatted read (like FORTRAN READ)

> printf(...) - formatted print (like FORTRAN WRITE)
¢ Common math functions

> sin (x) - sine function

> cos (X) - cosine function

> exp (X) - exponential function

> sqrt(x) - square root function

¢ For the UDF compiler, all of the standard functians
defined in the file udf.h

> NOTE: you do not need a copy of udf-h when you compile your UDF;
the solver gets this from the Fluent.Inc/fluenté.x/src/ directory

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

www.fluentusers.com FLUENT

Comparison with FORTRAN

¢ C functions are similar to FORTRAN function subrousine

/*A simple C function*/ C An equivalent FORTRAN function
int myfunction(int x) INTEGER FUNCTION MYFUNCTION(X)
{

inty,z; INTEGER X,Y,Z

y =11, Y=11

Z = X+y; Z=X+Y

printf(“z = %d”",z); WRITE (*,100) Z

return z; MYFUNCTION =Z

100 FORMAT(“Z = “,I5)

} END

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

ol T 0l www.fluentusers.com FLUENT

C Data Types (1)

¢ The UDF interpreter supports standard C data types

> intlong - integer data types
» float,double, real - floating point (real) data types
» char - character data type

¢ Functions which do not return values are giventype void
void myfunction(int x) {...} /*No return needed*/
¢ You can convert from one type to another by “cagtin
> acastis denoted liyype) where the type i, float, etc.
intx =1,
floaty = 3.14159;
int z = x+((int) y); [*z = 4%/

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

ol T 0l www.fluentusers.com FLUENT

C Data Types (2)

¢ C also allows you to create “user-defined” types gisypedef

typedef struct list { int a;

float b;

int c;};
typedef struct list mylist; /* mylist is of type structure list*/
mylist x,y,z; [* x,y,z are “struct list” type */

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

ol T 0l www.fluentusers.com FLUENT

Pointers

¢ A pointer is a variable which contains tiidress of another variable
¢ Pointers are defined using th@otation

int *ip; /* a pointer to an integer variable */
¢ We can make a pointer variable point to the addvépsedefined variable as
follows
inta=1;
int *ip;
ip = &a; /* &a returns the address of variable a */
printf(“content of address pointed to by ip = %d\n” , ¥ip);

content of address pointed to by ip =1

¢ Pointers can also point to the beginning of anyaf@ad thus pointers are
strongly connected to arrays in C)

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

www.fluentusers.com FLUENT

Arrays

¢ Arrays of variables can be defined using the notatiame[size]
wherename is the variable name arsize is an integer which defines
the number of elements in the array

¢ Some examples

int a[10];

float radii[5];

a[0] =1,

radii[4] = 3.14159265;

+ Notes about C arrays
— The index of C arrays start at 0

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

ol T 0l www.fluentusers.com FLUENT

Expressions and Statements

¢ Arithmetic expressions in C look much like FORTRAN

a = 1+(b-c)*d/4;
pi = 3.141592654;
area = pi*radius*radius;

« Functions which return values can be used in assgigh statements

b = myfunc(a); /* Function myfunc() is defined elsewhere */
¢ = pow(X,y); * pow(x,y) returns x raised to power y */

¢ Functions can also be called without assignments

do-stuff(); /* Function do-stuff() takes no arguments */
printf(“x= %f\n”,x); /* printf(..) is a standard C library function */

ANSYS, Inc. Proprietary

© 2006 ANSYS, Inc. All rights reserved.

Advanced FLUENT Training Fluent User Services Center I\NSYS

ol T 0l www.fluentusers.com FLUENT

Common C Operators

¢ Arithmetic operators ¢ Logical operators
= assignment < lessthan
+ addition <= less than or equal to

- subtraction
* multiplication
/ division

> greater than
>= greater than or equal

to
% modulo
i == equal to
++ increment
I=
- decrement = notequal to

ANSYS, Inc. Proprietary

© 2006 ANSYS, Inc. All rights reserved.

Advanced FLUENT Training Fluent User Services Center I\NSYS

ol T 0l www.fluentusers.com FLUENT

Control Flow - “If “and “If-else” Statements

e if "andifelse ' statements ¢ Example
/* Ccode *
if (logical-expression) if(q!=1){a=0;b=1;}
{statements} if (x<0.)
y =x/50.;
i floqical . else
if (logical-expression) y = X/25.:
{statements}
else C Equivalent FORTRAN code
{statements} IF (X.LT.0.) THEN
Y = X/50.
ELSE
Y = X/25.
ENDIF

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

ol T 0l www.fluentusers.com FLUENT

Control Flow - “For” Loops

for (begin ; end ; increment)

{statements}
wher e:
begin = expression, executed at begi nning of |oop
end = |l ogi cal expression to test for loop term nation
increment = expression which is executed at the end of each

loop iteration (usually increnenting a counter)

Example:

/* C code: C Equivalent FORTRAN code

Print integers 1-10 and

their squares */ INTEGER 1,J
inti, j, n=10; N =10
for(i=1;i<=n;i++) DOI1=1,10
{j=i; J=1*

printf(“%d %d\n”,i,j); WRITE (*,%) 1,J

} ENDDO

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

www.fluentusers.com FLUENT

The C Preprocessor

¢ The UDF interpreter suppor@preprocessor directives

¢ Macro substitutions usingtdefine name replacement
#define RAD 1.2345
#define Area_Rectangle(x,y) x*y

> The preprocessor simply substitutes the charaoferame with those of
replacement

¢ File inclusion using the directivéinclude
#include “udf.h”

#include “mystuff.h”
> The files named in quotes must reside in your ctird@ectory (except
for udf.h _ which is read automatically by the solver as na&adier)

© 2006 ANSYS, Inc. All rights reserved.

ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS
UDF Mar 2007

www.fluentusers.com FLUENT

Exploring C Further

¢ Some topics nafiscussed here
> while and do-while control statements
> structures and unions
> recursion
> reading and writing files
> many details!
¢ For more information on C programming, you may citnany general
text (there are margvailable)
A good choice is
The C Programming Language, 2nd Ed

by Brian Kernighan and Dennis Ritchie
Prentice-Hall, 1988

© 2006 ANSYS, Inc. All rights reserved.

ANSYS, Inc. Proprietary

User-Defined Eunct
Appendix 1IEFs
More on C-ERrogram

Advanced UDE
Maodeling CourseE 44

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS
UDF Mar 2007

www.fluentusers.com FLUENT

Introduction to C

¢ Why write in C?
¢ Topics covered in this brief introduction
» C functions
> C data types
> Pointers, arrays & structures
» Expressions and statements
» C arithmetic and logical operators
> Flow control
> File 1/O
> C preprocessor

© 2006 ANSYS, Inc. All rights reserved.

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

Why C?

¢ The FLUENT solver is written in C

www.fluentusers.com FLUENT

¢ Cis a versatile language with many versatile features

+ Current UDF internal compiler supports only a subset of ANSI C

© 2006 ANSYS, Inc. All rights reserved.

ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

www.fluentusers.com FLUENT

C Functions (1)

¢ The basic form of a C function:

/* A simple C function */ A comment line
#include “udf.h” A preprocessor directive for includi ng files
#define Pl 3.14159 A preprocessor d irective for macro substitution
float a = 1.2345; A variable with “global” scope, outside of {}
float myfunction(int x) Function declara tion (returns a float type)
{ Left curly brac e opens body of function

int y; Variable declaratio ns

float z;

y=11; Sety=11

z = a*(x+y)*Pl, Compute z

printf(“Value is %f",z); Print z to screen

return z; Return float value
} Right curly brace closes body of function

© 2006 ANSYS, Inc. All rights reserved.

ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

ol T 0l www.fluentusers.com FLUENT

C Functions (2)

¢ All C statements must end with a semicolon (;)

¢ Comments are delineated by the character sequence
[* .
» comments can be placed anywhere in a C listing
» use comments liberally to document your UDFs

¢ Groups of C statements are enclosed by curly braces ({ })

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

ol T 0l www.fluentusers.com FLUENT

C Functions (3)

¢ Variables defined within a { } body are local to that group (local scope)

¢ Variables defined outside the function body can be used by all
functions which follow the definition (global scope)

¢ If afunction is defined with a specific type, it must return a value of the
same type (using the return statement). If it doesn't return a value, it
must be declared void

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

www.fluentusers.com FLUENT

C Functions (4)

¢ C compilers include a library of standard math, 1/O, and utility functions
which can be used in your C code

¢ Some common I/O functions
> scanf(...) - formatted read (like FORTRAN READ)
> printf(...) - formatted print (like FORTRAN WRITE)

¢ Some common mathematical functions
> sin(x) - sine function
» cos(x) - cosine function
> exp(X) - exponential function
> sgrt(x) - square root function

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

ol T 0l www.fluentusers.com FLUENT

Comparison with FORTRAN

& C functions are similar to FORTRAN function
subroutines

/* A simple C function */ C An equivalent FORTRAN function
int myfunction(int X) INTEGER FUNCTION MYFUNCTION (X)
{

int y,z; INTEGER X,Y, Z

y=11; Y=11

Z = X+y, Z = X+Y

printf(“z = %d",z); WRITE (*,100)Z

return z; MYFUNCTION =Z

100 FORMAT(“Z = “5)
} END

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

ol T 0l www.fluentusers.com FLUENT

The main() function

¢ You won't see it much with UDFs but there is a wrapper function called
main()

¢ Generally a portal in the same was PROGRAMas in FORTRAN

#include <stdio.h>

int main(void)

{
printf(*Hello, world\n”);
return O;

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

ol T 0l www.fluentusers.com FLUENT

Exercise: Hello, world

*

Start up the editor gedit or emacs

L 2

Type in the program from the previous slide

¢ Save the file as hello.c

4

Compile the program
» cc hello.c —o hello

4

Run the program
> ./hello

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

ol T 0l www.fluentusers.com FLUENT

C Data Types (1)

¢ The UDF compiler supports standard C data types

> int,long - integer data types

» float,double - floating point data types (Usually
use real in UDFs)

» char - character data type

¢ Functions which do not return values are given the type void

» void myfunction(int x) { ...} /* No return
needed */

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

ol T 0l www.fluentusers.com FLUENT

C Data Types (2)

¢ You can convert from one type to another by “casting”

int z,x = 10;
floaty = 3.14159;
z = (int)(x*y); [*z=31%

¢ C also allows you to create “user-defined” types using typedef

typedef int mytype; /* define mytype to be integer typ e*/
mytype a,b,c; /* equivalent to int a,b,c */
typedef float real; /* or double depending on versio n*/

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

www.fluentusers.com FLUENT

Pointers (1)

¢ A pointer is a variable which contains the address of another variable

¢ Possibly the greatest leap of faith required for the FORTRAN77
programmer

¢ When we declare a variable
> int k ;
on seeing int the compiler sets aside 4 bytes of memory to hold the
value of the integer
¢ InC, k is called an object. Later if we write
> k=2 ;
thbe vaIEe 2 will be placed at the memory location associated with the
object

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

ol T 0l www.fluentusers.com FLUENT

Pointers (2)

¢ Suppose we want a variable that holds a memory location (or address)

¢ Such avariable is called a pointer

¢ Consider the declaration
> int *ptr;
¢ The * informs the compiler we wish to set aside enough memory for an
address

¢ Theint informs the compiler we wish to store the address of an
integer

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

www.fluentusers.com FLUENT

Pointers (3)

Suppose we store the in ptr the address of our integer k
> ptr = &k;

*

¢ Now ptr is said to point to k

4

Suppose we want to copy 7 to the address pointed to by ptr
> *ptr =7;/* Contents of ptr =7 */

¢ The * is the dereferencing operator
> It allows access to the value stored at the address ptr

¢ Since ptr points to k, we have also set the value of k to 7

© 2006 ANSYS, Inc. Al rights reserved. ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

ol T 0l www.fluentusers.com FLUENT

Pointers (4)
/

int *ptr;
int k;
ptr k
0x80ff97a4 ptr = &k;
*ptr
ptr k
*ptr =7;
ptr k

© 2006 ANSYS, Inc. Al rights reserved. ANSYS, Inc. Proprietary

Fluent User Services Center

www.fluentusers.com

=
s ¥ o

A

Pointer Fun with
[]

by Nick Parlante

This is document 104 in the Stanford CS
Education Library — please see
cslibrary.stanford.edu

for this video, its associated documents,
and other free educational materials.

Copyright © 1999 Nick Parlante. See copyright
panel for redistribution terms.
Carpe Post Meridiem!

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

ol LT alo www.fluentusers.com FLUENT®

Exercise: Pointerl
¢ Save as pointerl.c, compile and execute it

#include <stdio.h>

int j, k;

int *ptr;

int main(void)

{
=1
k=2;
ptr = &k;
printf("\n");
printf("j has the value %d and is stored at %p\n", j , (void *)&j);
printf("k has the value %d and is stored at %p\n", k , (void *)&K);
printf("ptr has the value %p and is stored at %p\n“, ptr, (void *)&ptr);
printf("The value of the integer pointed to by ptr is %d\n",*ptr);

return 0;

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

Pointers (5)

» In C, function parameters are
passed by value

> They only go one way

> You cannot alter the value of a
parameter within a function ;
and expect the calling function
to see the change

» Complete opposite of F77

> Only one value is returned by

the function

» Classic opportunity to use

pointers!!!! j‘
Jﬂ Retumn value

www.fluentusers.com FLUENT

L=

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

www.fluentusers.com FLUENT

Exercise: By value

#include <stdio.h>

#include <math.h>

int main(void)

{
double x[3] ={1.0, 1.0, 2.0};
double mag;
double unit_vector(double *v); /* Function prototyp e
printf("Initial vector: (%9.2e%9.2e%9.2e)\n",x[0],x [1],x[2]);

mag = unit_vector(x);

printf("Magnitude of vector: %9.2e\n",mag);

printf("Unit vector: (%9.2e%9.2e%9.2e)\n",x[0],x[1] X[2]);

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

www.fluentusers.com FLUENT

Exercise: By value (cont.)

double unit_vector(double *v)

{

double magnitude;

magnitude = sqrt(v[0]*v[O]+V[1]*V[1]+V[2]*V[2]);
v[0] = v[0)/magnitude;

V[1] = v[1})/magnitude;

Vv[2] = v[2]/magnitude;

return (magnitude);

> Type this in and compile using > Look at the output and
cc by_value.c -im —o by_value convince yourself that the by
reference route works

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

Arrays (1)

¢ Arrays are defined using the notation:
> type name[size];
where type isint , float , etc.; nameis self-explanatory; and size
is the number of elements in the array

www.fluentusers.com FLUENT

¢ Examples:
> int a[l10];
» float radii[5];

¢ In C, arrays start with index 0
> a[0] =1, to a[9] = 44;

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

Arrays (2)

¢ An alternative way of declaring and initialising an array in
one go:
> int array[]={1, 2,5, 7, 11, 13},

will create an array with six elements

www.fluentusers.com FLUENT

¢ The six integers are located contiguously in memory

> There is an interesting (and useful) relationship
between arrays and pointers

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

ol T 0l www.fluentusers.com FLUENT

Arrays and Pointers (1)

¢ We can access the elements of array using pointers

int *ptr;
ptr = &array[0];

¢ ptr is set to the address of the zeroth element in the array
> More simply done by ptr = array;

¢ We can access the it element of the array as
> *(ptr+i)

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

ol T 0l www.fluentusers.com FLUENT

Exercise: Pointer2

¢ Save as pointer2.c, compile and execute it

#include <stdio.h>
int array[] = {1, 23, 17, 4, -5, 100};
int *ptr;
int main(void)
{
int i;

ptr = &array[0]; /* Pointer points to first element of array */

printf("\n\n");
for (i=0; i<6; i++)
{
printf("array[%d] = %3d ", i, array[i]);
printf("ptr + %d = %3d\n", i, *(ptr+i));
}

return 0;

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

www.fluentusers.com FLUENT

Exercise: Pointer 2 (cont.)

¢ Modify the program by changing

ptr = &array[0];

to

ptr = array;

and verify that the results are the same

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

www.fluentusers.com FLUENT

Structures (1)

¢ A structure is a user-defined data type
¢ Itis a combination of a number of previous declared types
¢ Usually appears near the start of a program

typedef struct
{

double real;
double imag;

} Complex; /* types usually capitalised */

Complex c1, c2;

© 2006 ANSYS, Inc. All rights reserved.

ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

www.fluentusers.com FLUENT

Structures (2)

» The individual elements of the » Referencing the elements of a

structure are accessed as structure when using a pointer
follows: is achieved thus:
e c_ptr->real;
double x, y;

which is equivalent to
e (*c_ptr).real;
...but much easier to use!

x = cl.real — c2.imag;

y = cl.imag + c2.real;

> You can define a pointer to a))
structure in the usual way » Passing pointers to structures
. complex *c_ptr; to functions is a good way of
- passing data to and fro

» Careful of big structures though!

© 2006 ANSYS, Inc. All rights reserved.

ANSYS, Inc. Proprietary

Advanced FLUENT Training

UDF Mar 2007

www.fluentusers.com

Fluent User Services Center

NANSYS

Exercise: Structurel

#include <stdio.h>

int main(void)
{
Struct
{
char initial; /* last name initial */
int age; /* childs age */
int grade; /* childs grade in school */
} boy,girl;

boy.initial = 'R'; boy.age = 15; boy.grade =75

girl.age = boy.age - 1; girl.grade = 82; girl.init

printf("%c is %d years old and got a grade of %d\n",
girl.initial, girl.age, girl.grade);

printf("%c is %d years old and got a grade of %d\n",
boy.initial, boy.age, boy.grade);

FLUENT

ial ='H

© 2006 ANSYS, Inc. All rights reserved.

Advanced FLUENT Training
UDF Mar 2007

www.fluentusers.com

Fluent User Services Center

ANSYS, Inc. Proprietary

NANSYS

FLUENT

Expressions and Statements

¢ Arithmetic expressions in C look like F77
a = 1.0+(b-c)*d/4.0; /* Note decimal points fo r floats.*/

pi = 3.141592654; /* All statements end with a semic olon. */
area = pi*radius*radius;

¢ Functions which return values can be used in assignments

b = myfunc(a); /* The function myfunc() is defined . _elsewhere */
x = pow(g,2) FUTROtiONSgans alsseb® used without assigmments

do_stuff(); /* Function do_stuff() takes
printf(“x = %f\n",x); /* printf(..) is a standard C

no arguments */
library function */

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

Advanced FLUENT Training

UDF Mar 2007

Fluent User Services Center

NANSYS

www.fluentusers.com

Operators (1)

¢ Arithmetic operators .
> = assignment
> + addition
> - subtraction
> *
multiplication
> division
> % modulo
> ++ increment
> - decrement

FLUENT

Logical operators

> < less than

» <= less than or
equal to

> > greater than

> >= greater than
or equal to

» == equal to

> 1= not equal to

© 2006 ANSYS, Inc. All rights reserved.

Advanced FLUENT Training

Fluent User Services Center
UDF Mar 2007)
www.fluentusers.com

ANSYS, Inc. Proprietary

NANSYS

Operators (2)

¢ There are some shortcuts in C
> i++; is the same as i=i+1;
is the same as i=i+2;

>

i++2;
> Similarly for --
a +=b; isthe same as a = atb;
Similarly for-= *= and /=

FLUENT

(** and// do NOT exist)

© 2006 ANSYS, Inc. All rights reserved.

ANSYS, Inc. Proprietary

Advanced FLUENT Training

UDF Mar 2007

www.fluentusers.com

Control of Flow (1)

¢ if statements

if (logical-expression)
{statements}

else if (logical-expression)
statement;

else

{statements}

Note

A single statement can be used or
multiple statements enclosed in a
{} block.

© 2006 ANSYS, Inc. All rights reserved.

Advanced FLUENT Training

UDF Mar 2007

www.fluentusers.com

Control of Flow (2)

¢ for loops
for (begin ; end ; increment)
{statements}
where:

begin ; expression which is
executed at beginning of loop

end; logical expression which
tests for loop termination

increment ; expression which
is executed at the end of each
loop iteration (usually
incrementing a counter)

© 2006 ANSYS, Inc. All rights reserved.

Fluent User Services Center

if(q!=1)
{a=0;b=1;}

if (x<0.)
y =x/50,;
else
{y = x/25.; x=-x;}

IF (X.LT.0.) THEN
Y = X/50.
ELSE
Y = X/25.
X=-X
ENDIF

Fluent User Services Center

/* Print integers 1-10 and
their squares */

int i, j, n=10;
for(i=1;i<=n;i++)
{
=1
printf(“%d %d\n",ij);
}
C Equivalent FORTRAN code
INTEGER 1,3, N
N =10
DO 1=1,10
J=1*
WRITE (**) 1,J
ENDDO

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

www.fluentusers.com FLUENT

Exercise: Control

Write a C program to step through the first 10 integers

2

2

If the integer is a multiple of 3 then print out the number itself

2

If the integer is a multiple of 4 then print out the number divided by one
less than itself (in floating arithmetic)

¢ Otherwise add the number to a running total which should be output at
the end

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

www.fluentusers.com FLUENT

File Handling (1)

¢ printf writes formatted data to
the console/screen

#include <stdio.h>
FILE *iofile;
iofile = fopen(“test.dat”, “w");

¢ fprintf writes to a file instead forintf(iofile, “Hello, world\n):

fclose(iofile);

¢ scanf and fscanf are similar
functions for reading files

printf(“%d\n”, i);
BUT
scanf(“%d”, &i);

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

www.fluentusers.com FLUENT

Exercise: Write

¢ Modify your control program to write the data to an output
file called control.dat

¢ Save this as write.c in the usual way

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

www.fluentusers.com FLUENT

The C Preprocessor (1)

¢ Commands preceded by # are passed through the C preprocessor (ie
before compilation)

> Header file inclusion
> Macro definitions

¢ File inclusion using the directive #include
> #include <stdio.h>
> #include “udf.h”
> #include “mystuff.h”
> The files named in quotes must reside in your current directory

(except for udf.h which is read automatically by the solver as noted
earlier)

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

el T A0 www.fluentusers.com FLUENT

The C Preprocessor (2)

¢ Macro substitutions using #define name replacement
> #define RADIUS 1.2345
> #define DIAM (3.14159*RADIUS)

¢ The preprocessor simply substitutes the characters of name with those
of replacement

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

www.fluentusers.com FLUENT

The C Preprocessor (3)
» Macro substitutions can be made more like simple functions:
« #define SQR(A)((A)*(A))
« #define DOT_PROD(A,B)(A[0]*B[0]+A[1]*B[1]\
+A[2]*B[2])
> SQR(A) & DOT_PROD(A,B) are replaced by everything after the first
closing “)".
» The pattern A can be any expression. Note that it is in brackets (A) on
the definition side of SQR(A).
> This avoids errors when A is a complex mathematical expression.
> Note also that there doesn’t have to be a space after the first closing “)".

> The “\ " is a continuation character used to split long #define lines onto
multiple lines.

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

ol T 0l www.fluentusers.com FLUENT

Exploring C Further

« Some topics not discussed here
- while and do-while control statements
« unions
« recursion
« many details!

- For more information on C programming, you may consult any general text
(there are many available)

A very good set of books are published by O’Reilly, (www.oreilly.com)
in particular:

Practical C Programming, 3rd Ed
by Steve Oualline
O'Reilly, 1997

For the more dedicated, the book by the originators of C can be useful:

The C Programming Language, 2nd Ed
by Brian Kernighan and Dennis Ritchie
Prentice-Hall, 1988

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

