User-Defined Eunct
Appendix 1IEFs
More on C-ERrogram

Advanced UDE
Maodeling CourseE 44

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS
UDF Mar 2007

www.fluentusers.com FLUENT

Introduction to C

¢ Why write in C?
¢ Topics covered in this brief introduction
» C functions
> C data types
> Pointers, arrays & structures
» Expressions and statements
» C arithmetic and logical operators
> Flow control
> File 1/O
> C preprocessor

© 2006 ANSYS, Inc. All rights reserved.

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

Why C?

¢ The FLUENT solver is written in C

www.fluentusers.com FLUENT

¢ Cis a versatile language with many versatile features

+ Current UDF internal compiler supports only a subset of ANSI C

© 2006 ANSYS, Inc. All rights reserved.

ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

www.fluentusers.com FLUENT

C Functions (1)

¢ The basic form of a C function:

/* A simple C function */ A comment line
#include “udf.h” A preprocessor directive for includi ng files
#define Pl 3.14159 A preprocessor d irective for macro substitution
float a = 1.2345; A variable with “global” scope, outside of {}
float myfunction(int x) Function declara tion (returns a float type)
{ Left curly brac e opens body of function

int y; Variable declaratio ns

float z;

y=11; Sety=11

z = a*(x+y)*Pl, Compute z

printf(“Value is %f",z); Print z to screen

return z; Return float value
} Right curly brace closes body of function

© 2006 ANSYS, Inc. All rights reserved.

ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

ol T 0l www.fluentusers.com FLUENT

C Functions (2)

¢ All C statements must end with a semicolon (;)

¢ Comments are delineated by the character sequence
[* .
» comments can be placed anywhere in a C listing
» use comments liberally to document your UDFs

¢ Groups of C statements are enclosed by curly braces ({ })

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

ol T 0l www.fluentusers.com FLUENT

C Functions (3)

¢ Variables defined within a { } body are local to that group (local scope)

¢ Variables defined outside the function body can be used by all
functions which follow the definition (global scope)

¢ If afunction is defined with a specific type, it must return a value of the
same type (using the return statement). If it doesn't return a value, it
must be declared void

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

www.fluentusers.com FLUENT

C Functions (4)

¢ C compilers include a library of standard math, 1/O, and utility functions
which can be used in your C code

¢ Some common I/O functions
> scanf(...) - formatted read (like FORTRAN READ)
> printf(...) - formatted print (like FORTRAN WRITE)

¢ Some common mathematical functions
> sin(x) - sine function
» cos(x) - cosine function
> exp(X) - exponential function
> sgrt(x) - square root function

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

ol T 0l www.fluentusers.com FLUENT

Comparison with FORTRAN

& C functions are similar to FORTRAN function
subroutines

/* A simple C function */ C An equivalent FORTRAN function
int myfunction(int X) INTEGER FUNCTION MYFUNCTION (X)
{

int y,z; INTEGER X,Y, Z

y=11; Y=11

Z = X+y, Z = X+Y

printf(“z = %d",z); WRITE (*,100)Z

return z; MYFUNCTION =Z

100 FORMAT(“Z = “5)
} END

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

ol T 0l www.fluentusers.com FLUENT

The main() function

¢ You won't see it much with UDFs but there is a wrapper function called
main()

¢ Generally a portal in the same was PROGRAMas in FORTRAN

#include <stdio.h>

int main(void)

{
printf(*Hello, world\n”);
return O;

© 2006 ANSYS, Inc. All rights reserved. - ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

ol T 0l www.fluentusers.com FLUENT

Exercise: Hello, world

*

Start up the editor gedit or emacs

L 2

Type in the program from the previous slide

¢ Save the file as hello.c

4

Compile the program
» cc hello.c —o hello

4

Run the program
> ./hello

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

ol T 0l www.fluentusers.com FLUENT

C Data Types (1)

¢ The UDF compiler supports standard C data types

> int,long - integer data types

» float,double - floating point data types (Usually
use real in UDFs)

» char - character data type

¢ Functions which do not return values are given the type void

» void myfunction(int x) { ...} /* No return
needed */

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

ol T 0l www.fluentusers.com FLUENT

C Data Types (2)

¢ You can convert from one type to another by “casting”

int z,x = 10;
floaty = 3.14159;
z = (int)(x*y); [*z=31%

¢ C also allows you to create “user-defined” types using typedef

typedef int mytype; /* define mytype to be integer typ e*/
mytype a,b,c; /* equivalent to int a,b,c */
typedef float real; /* or double depending on versio n*/

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

www.fluentusers.com FLUENT

Pointers (1)

¢ A pointer is a variable which contains the address of another variable

¢ Possibly the greatest leap of faith required for the FORTRAN77
programmer

¢ When we declare a variable
> int k ;
on seeing int the compiler sets aside 4 bytes of memory to hold the
value of the integer
¢ InC, k is called an object. Later if we write
> k=2 ;
thbe vaIEe 2 will be placed at the memory location associated with the
object

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

ol T 0l www.fluentusers.com FLUENT

Pointers (2)

¢ Suppose we want a variable that holds a memory location (or address)

¢ Such avariable is called a pointer

¢ Consider the declaration
> int *ptr;
¢ The * informs the compiler we wish to set aside enough memory for an
address

¢ Theint informs the compiler we wish to store the address of an
integer

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

www.fluentusers.com FLUENT

Pointers (3)

Suppose we store the in ptr the address of our integer k
> ptr = &k;

*

¢ Now ptr is said to point to k

4

Suppose we want to copy 7 to the address pointed to by ptr
> *ptr =7;/* Contents of ptr =7 */

¢ The * is the dereferencing operator
> It allows access to the value stored at the address ptr

¢ Since ptr points to k, we have also set the value of k to 7

© 2006 ANSYS, Inc. Al rights reserved. ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

ol T 0l www.fluentusers.com FLUENT

Pointers (4)
/

int *ptr;
int k;
ptr k
0x80ff97a4 ptr = &k;
*ptr
ptr k
*ptr =7;
ptr k

© 2006 ANSYS, Inc. Al rights reserved. ANSYS, Inc. Proprietary

Fluent User Services Center

www.fluentusers.com

=
s ¥ o

A

Pointer Fun with
[]

by Nick Parlante

This is document 104 in the Stanford CS
Education Library — please see
cslibrary.stanford.edu

for this video, its associated documents,
and other free educational materials.

Copyright © 1999 Nick Parlante. See copyright
panel for redistribution terms.
Carpe Post Meridiem!

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

ol LT alo www.fluentusers.com FLUENT®

Exercise: Pointerl
¢ Save as pointerl.c, compile and execute it

#include <stdio.h>

int j, k;

int *ptr;

int main(void)

{
=1
k=2;
ptr = &k;
printf("\n");
printf("j has the value %d and is stored at %p\n", j , (void *)&j);
printf("k has the value %d and is stored at %p\n", k , (void *)&K);
printf("ptr has the value %p and is stored at %p\n“, ptr, (void *)&ptr);
printf("The value of the integer pointed to by ptr is %d\n",*ptr);

return 0;

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

Pointers (5)

» In C, function parameters are
passed by value

> They only go one way

> You cannot alter the value of a
parameter within a function ;
and expect the calling function
to see the change

» Complete opposite of F77

> Only one value is returned by

the function

» Classic opportunity to use

pointers!!!! j‘
Jﬂ Retumn value

www.fluentusers.com FLUENT

L=

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

www.fluentusers.com FLUENT

Exercise: By value

#include <stdio.h>

#include <math.h>

int main(void)

{
double x[3] ={1.0, 1.0, 2.0};
double mag;
double unit_vector(double *v); /* Function prototyp e
printf("Initial vector: (%9.2e%9.2e%9.2e)\n",x[0],x [1],x[2]);

mag = unit_vector(x);

printf("Magnitude of vector: %9.2e\n",mag);

printf("Unit vector: (%9.2e%9.2e%9.2e)\n",x[0],x[1] X[2]);

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

www.fluentusers.com FLUENT

Exercise: By value (cont.)

double unit_vector(double *v)

{

double magnitude;

magnitude = sqrt(v[0]*v[O]+V[1]*V[1]+V[2]*V[2]);
v[0] = v[0)/magnitude;

V[1] = v[1})/magnitude;

Vv[2] = v[2]/magnitude;

return (magnitude);

> Type this in and compile using > Look at the output and
cc by_value.c -im —o by_value convince yourself that the by
reference route works

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

Arrays (1)

¢ Arrays are defined using the notation:
> type name[size];
where type isint , float , etc.; nameis self-explanatory; and size
is the number of elements in the array

www.fluentusers.com FLUENT

¢ Examples:
> int a[l10];
» float radii[5];

¢ In C, arrays start with index 0
> a[0] =1, to a[9] = 44;

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

Arrays (2)

¢ An alternative way of declaring and initialising an array in
one go:
> int array[]={1, 2,5, 7, 11, 13},

will create an array with six elements

www.fluentusers.com FLUENT

¢ The six integers are located contiguously in memory

> There is an interesting (and useful) relationship
between arrays and pointers

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

ol T 0l www.fluentusers.com FLUENT

Arrays and Pointers (1)

¢ We can access the elements of array using pointers

int *ptr;
ptr = &array[0];

¢ ptr is set to the address of the zeroth element in the array
> More simply done by ptr = array;

¢ We can access the it element of the array as
> *(ptr+i)

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

ol T 0l www.fluentusers.com FLUENT

Exercise: Pointer2

¢ Save as pointer2.c, compile and execute it

#include <stdio.h>
int array[] = {1, 23, 17, 4, -5, 100};
int *ptr;
int main(void)
{
int i;

ptr = &array[0]; /* Pointer points to first element of array */

printf("\n\n");
for (i=0; i<6; i++)
{
printf("array[%d] = %3d ", i, array[i]);
printf("ptr + %d = %3d\n", i, *(ptr+i));
}

return 0;

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

www.fluentusers.com FLUENT

Exercise: Pointer 2 (cont.)

¢ Modify the program by changing

ptr = &array[0];

to

ptr = array;

and verify that the results are the same

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

www.fluentusers.com FLUENT

Structures (1)

¢ A structure is a user-defined data type
¢ Itis a combination of a number of previous declared types
¢ Usually appears near the start of a program

typedef struct
{

double real;
double imag;

} Complex; /* types usually capitalised */

Complex c1, c2;

© 2006 ANSYS, Inc. All rights reserved.

ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

www.fluentusers.com FLUENT

Structures (2)

» The individual elements of the » Referencing the elements of a

structure are accessed as structure when using a pointer
follows: is achieved thus:
e c_ptr->real;
double x, y;

which is equivalent to
e (*c_ptr).real;
...but much easier to use!

x = cl.real — c2.imag;

y = cl.imag + c2.real;

> You can define a pointer to a))
structure in the usual way » Passing pointers to structures
. complex *c_ptr; to functions is a good way of
- passing data to and fro

» Careful of big structures though!

© 2006 ANSYS, Inc. All rights reserved.

ANSYS, Inc. Proprietary

Advanced FLUENT Training

UDF Mar 2007

www.fluentusers.com

Fluent User Services Center

NANSYS

Exercise: Structurel

#include <stdio.h>

int main(void)
{
Struct
{
char initial; /* last name initial */
int age; /* childs age */
int grade; /* childs grade in school */
} boy,girl;

boy.initial = 'R'; boy.age = 15; boy.grade =75

girl.age = boy.age - 1; girl.grade = 82; girl.init

printf("%c is %d years old and got a grade of %d\n",
girl.initial, girl.age, girl.grade);

printf("%c is %d years old and got a grade of %d\n",
boy.initial, boy.age, boy.grade);

FLUENT

ial ='H

© 2006 ANSYS, Inc. All rights reserved.

Advanced FLUENT Training
UDF Mar 2007

www.fluentusers.com

Fluent User Services Center

ANSYS, Inc. Proprietary

NANSYS

FLUENT

Expressions and Statements

¢ Arithmetic expressions in C look like F77
a = 1.0+(b-c)*d/4.0; /* Note decimal points fo r floats.*/

pi = 3.141592654; /* All statements end with a semic olon. */
area = pi*radius*radius;

¢ Functions which return values can be used in assignments

b = myfunc(a); /* The function myfunc() is defined . _elsewhere */
x = pow(g,2) FUTROtiONSgans alsseb® used without assigmments

do_stuff(); /* Function do_stuff() takes
printf(“x = %f\n",x); /* printf(..) is a standard C

no arguments */
library function */

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

Advanced FLUENT Training

UDF Mar 2007

Fluent User Services Center

NANSYS

www.fluentusers.com

Operators (1)

¢ Arithmetic operators .
> = assignment
> + addition
> - subtraction
> *
multiplication
> division
> % modulo
> ++ increment
> - decrement

FLUENT

Logical operators

> < less than

» <= less than or
equal to

> > greater than

> >= greater than
or equal to

» == equal to

> 1= not equal to

© 2006 ANSYS, Inc. All rights reserved.

Advanced FLUENT Training

Fluent User Services Center
UDF Mar 2007)
www.fluentusers.com

ANSYS, Inc. Proprietary

NANSYS

Operators (2)

¢ There are some shortcuts in C
> i++; is the same as i=i+1;
is the same as i=i+2;

>

i++2;
> Similarly for --
a +=b; isthe same as a = atb;
Similarly for-= *= and /=

FLUENT

(** and// do NOT exist)

© 2006 ANSYS, Inc. All rights reserved.

ANSYS, Inc. Proprietary

Advanced FLUENT Training

UDF Mar 2007

www.fluentusers.com

Control of Flow (1)

¢ if statements

if (logical-expression)
{statements}

else if (logical-expression)
statement;

else

{statements}

Note

A single statement can be used or
multiple statements enclosed in a
{} block.

© 2006 ANSYS, Inc. All rights reserved.

Advanced FLUENT Training

UDF Mar 2007

www.fluentusers.com

Control of Flow (2)

¢ for loops
for (begin ; end ; increment)
{statements}
where:

begin ; expression which is
executed at beginning of loop

end; logical expression which
tests for loop termination

increment ; expression which
is executed at the end of each
loop iteration (usually
incrementing a counter)

© 2006 ANSYS, Inc. All rights reserved.

Fluent User Services Center

if(q!=1)
{a=0;b=1;}

if (x<0.)
y =x/50,;
else
{y = x/25.; x=-x;}

IF (X.LT.0.) THEN
Y = X/50.
ELSE
Y = X/25.
X=-X
ENDIF

Fluent User Services Center

/* Print integers 1-10 and
their squares */

int i, j, n=10;
for(i=1;i<=n;i++)
{
=1
printf(“%d %d\n",ij);
}
C Equivalent FORTRAN code
INTEGER 1,3, N
N =10
DO 1=1,10
J=1*
WRITE (**) 1,J
ENDDO

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

www.fluentusers.com FLUENT

Exercise: Control

Write a C program to step through the first 10 integers

2

2

If the integer is a multiple of 3 then print out the number itself

2

If the integer is a multiple of 4 then print out the number divided by one
less than itself (in floating arithmetic)

¢ Otherwise add the number to a running total which should be output at
the end

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

www.fluentusers.com FLUENT

File Handling (1)

¢ printf writes formatted data to
the console/screen

#include <stdio.h>
FILE *iofile;
iofile = fopen(“test.dat”, “w");

¢ fprintf writes to a file instead forintf(iofile, “Hello, world\n):

fclose(iofile);

¢ scanf and fscanf are similar
functions for reading files

printf(“%d\n”, i);
BUT
scanf(“%d”, &i);

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

www.fluentusers.com FLUENT

Exercise: Write

¢ Modify your control program to write the data to an output
file called control.dat

¢ Save this as write.c in the usual way

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

www.fluentusers.com FLUENT

The C Preprocessor (1)

¢ Commands preceded by # are passed through the C preprocessor (ie
before compilation)

> Header file inclusion
> Macro definitions

¢ File inclusion using the directive #include
> #include <stdio.h>
> #include “udf.h”
> #include “mystuff.h”
> The files named in quotes must reside in your current directory

(except for udf.h which is read automatically by the solver as noted
earlier)

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

el T A0 www.fluentusers.com FLUENT

The C Preprocessor (2)

¢ Macro substitutions using #define name replacement
> #define RADIUS 1.2345
> #define DIAM (3.14159*RADIUS)

¢ The preprocessor simply substitutes the characters of name with those
of replacement

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

UDF Mar 2007

www.fluentusers.com FLUENT

The C Preprocessor (3)
» Macro substitutions can be made more like simple functions:
« #define SQR(A)((A)*(A))
« #define DOT_PROD(A,B)(A[0]*B[0]+A[1]*B[1]\
+A[2]*B[2])
> SQR(A) & DOT_PROD(A,B) are replaced by everything after the first
closing “)".
» The pattern A can be any expression. Note that it is in brackets (A) on
the definition side of SQR(A).
> This avoids errors when A is a complex mathematical expression.
> Note also that there doesn’t have to be a space after the first closing “)".

> The “\ " is a continuation character used to split long #define lines onto
multiple lines.

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

Advanced FLUENT Training Fluent User Services Center I\NSYS

ol T 0l www.fluentusers.com FLUENT

Exploring C Further

« Some topics not discussed here
- while and do-while control statements
« unions
« recursion
« many details!

- For more information on C programming, you may consult any general text
(there are many available)

A very good set of books are published by O’Reilly, (www.oreilly.com)
in particular:

Practical C Programming, 3rd Ed
by Steve Oualline
O'Reilly, 1997

For the more dedicated, the book by the originators of C can be useful:

The C Programming Language, 2nd Ed
by Brian Kernighan and Dennis Ritchie
Prentice-Hall, 1988

© 2006 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

