Numerical approximations of derivatives and integralls

Gergely Kristóf
5-th September 2012

Finite difference method error and convergence

Representative values: $\mathrm{x}_{\mathrm{j}}, \mathrm{u}_{\mathrm{j}}$
Obtain the change of the solution from the derivatives: $\mathrm{u}_{\mathrm{j}+1}-\mathrm{u}_{\mathrm{j}-1}$

The approximation error reduces with reduced interva size.
One scheme is better than the other...

Forward Differencing Scheme (FDS)

Taylor polynomial of the solution from point j to point $j+1$:
$u_{j+1}=u_{j}+u_{j}^{\prime} \Delta x+o(\Delta x)$
This is an integration scheme of first order accuracy.

When the differencial equation is given in the explicit form:
$u_{j}^{\prime}=f\left(u_{j}, x_{j}\right)$
we can integral step by step, by assuming:
$u_{j+1} \cong u_{j}+f\left(u_{j}, x_{j}\right) \Delta x$
Note that, the error term is one degree of magnitude higher.

Backward Differencing Scheme (BDS)

When F is evaluated in $j+1$, we
may end up with a more
complicated expression for $\mathrm{u}_{\mathrm{i}+1}$. This kind of discretization is
called implicit:
Another first order scheme:
$u_{j}=u_{j+1}+u^{\prime}{ }_{j+1}(-\Delta x)+o(\Delta x)$
from the backward Euler scheme we get:
$u_{j+1}^{\prime}=\frac{u_{j+1}-u_{j}}{\Delta x}+o(1)$
Now, we assume the differential equation is given in the following form:
$F\left(u^{\prime}, u, x\right)=0$
$F\left(u^{\prime}{ }_{j+1}, u_{j+1}, x_{j+1}\right)=0$ \qquad $F\left(\frac{u_{j+1}-u_{j}}{\Delta x}, u_{j+1}, x_{j+1} \cong 0\right.$

Central Differencing Scheme (CDS)

$$
\begin{gathered}
u_{j+1}=u_{j}+u^{\prime}{ }_{j} \Delta x+u^{\prime \prime}{ }_{j} \frac{\Delta x^{2}}{2}+o\left(\Delta x^{2}\right) \\
u_{j-1}=u_{j}+u_{j}^{\prime}{ }_{j}(-\Delta x)+u^{\prime \prime}{ }_{j} \frac{\Delta x^{2}}{2}+o\left(\Delta x^{2}\right) \\
u^{\prime}{ }_{j}=\frac{u_{j+1}-u_{j-1}}{2 \Delta x}+o(\Delta x)
\end{gathered}
$$

Extensively used in CFD for spatial discretization.

An implicit differencing scheme with second order accuracy

$u_{j}=u_{j+1}+u^{\prime}{ }_{j+1}(-\Delta x)+u^{\prime \prime}{ }_{j+1} \frac{\Delta x^{2}}{2}+o\left(\Delta x^{2}\right)$
$u_{j-1}=u_{j+1}+u^{\prime}{ }_{j+1}(-2 \Delta x)+u^{\prime \prime}{ }_{j+1} 2 \Delta x^{2}+o\left(\Delta x^{2}\right)$
$u_{j}-\frac{u_{j-1}}{4}=\frac{3}{4} u_{j+1}+u^{\prime}{ }_{j+1}\left(-\frac{\Delta x}{2}\right)+o\left(\Delta x^{2}\right)$
$u^{\prime}{ }_{j+1}=\frac{\frac{3}{2} u_{j+1}-2 u_{j}+\frac{1}{2} u_{j-1}}{\Delta x}+o(\Delta x)$
Can be used for discretizing the boundary layer equation.

Adams-Basforth scheme

$u_{j+1}=u_{j}+u^{\prime}{ }_{j} \Delta x+u^{\prime \prime}{ }_{j} \frac{\Delta x^{2}}{2}+o\left(\Delta x^{2}\right)$

$u_{j+1}=u_{j}+\frac{3}{2} u^{\prime}{ }_{j} \Delta x-\frac{1}{2} u^{\prime}{ }_{j-1} \Delta x+o\left(\Delta x^{2}\right)$
An explicit integrating scheme with second order accuracy It is often used for integrating the Navier-Stoket equations.

A 2 step 2 ${ }^{\text {nd }}$ order explicit Runge-Kutta type scheme

$1^{\text {st }}$ step: Use the Euler method for geting into point j :

$$
u_{j}=u_{j-1}+u_{j-1}^{\prime} \Delta x+o(\Delta x)
$$

Evaluate the derivative in point j :
$d=f\left(u_{j}+o(\Delta x), x_{j}\right)=f\left(u_{j}, x_{j}\right)+\left.\frac{d f}{d u}\right|_{u_{j}, x_{j}} \cdot o(\Delta x)=u_{j}^{\prime}+o(\Delta x)$
$2^{\text {nd }}$ step: Use CDS scheme around point j :

$$
u_{j+1}=u_{j-1}+d 2 \Delta x+o\left(\Delta x^{2}\right)=u_{j-1}+u_{j}^{\prime} 2 \Delta x+o\left(\Delta x^{2}\right)
$$

Can be used for calculating compressible flows (eg. Lax-Wendroff method).

Finite volume method

U : volume intensity of an arbitrary conserved quantity.
$\frac{\partial}{\partial \mathrm{t}} \int_{\mathrm{V}} \mathrm{UdV}+\int_{\mathrm{A}} \overrightarrow{\mathrm{F}} \cdot \mathrm{d} \overrightarrow{\mathrm{A}}=\int_{\mathrm{V}} \mathrm{S}_{\mathrm{V}} \mathrm{dV}+\int_{\mathrm{A}} \overrightarrow{\mathrm{S}}_{\mathrm{A}} \cdot \mathrm{d} \overrightarrow{\mathrm{A}}$
The conserved quantity per init mass of fluid:

$$
\Phi=\mathrm{U} / \rho
$$

Convective and conductive fluxes:
$\overrightarrow{\mathrm{F}}_{\mathrm{C}}=\rho \Phi \vec{\nabla} \quad \overrightarrow{\mathrm{F}}_{\mathrm{D}}=-\Gamma \nabla \Phi$
$\frac{\partial}{\partial \mathrm{t}} \int_{\mathrm{V}} \rho \Phi \mathrm{dV}+\int_{\mathrm{A}} \rho \Phi \overrightarrow{\mathrm{V}} \cdot \mathrm{d} \overrightarrow{\mathrm{A}}=\oint_{\mathrm{A}}\left(\Gamma \nabla \Phi+\overrightarrow{\mathrm{S}}_{\mathrm{A}}\right) \cdot \mathrm{d} \overrightarrow{\mathrm{A}}+\int_{\mathrm{V}} \mathrm{S}_{\mathrm{V}} \mathrm{dV}$
Finite volume method is conservative: discretization errors do not produce or destroy conserved physical properties. Conservation equations are exactly fulfilled on the computational domain.

Discretization of the Navier-Stokes equation is rather difficult on this way...
$\frac{\partial \rho}{\partial t}+\frac{\partial \rho u}{\partial x}+\frac{\partial \rho v}{\partial y}+\frac{\partial \rho w}{\partial x}=0$
$\frac{\partial \rho u}{\partial t}+\frac{\partial \rho u^{2}}{\partial x}+\frac{\partial \rho u v}{\partial y}+\frac{\partial \rho u w}{\partial y}=-\frac{\partial p}{\partial x}+\rho g_{x}+\frac{\partial}{\partial x}\left(\mu \frac{\partial u}{\partial x}\right)+\frac{\partial}{\partial y}\left(\mu \frac{\partial u}{\partial y}\right)+\frac{\partial}{\partial z}\left(\mu \frac{\partial u}{\partial z}\right)$
$\frac{\partial \rho v}{\partial t}+\frac{\partial \rho v u}{\partial x}+\frac{\partial \rho v^{2}}{\partial y}+\frac{\partial \rho v w}{\partial y}=-\frac{\partial p}{\partial y}+\rho g_{y}+\frac{\partial}{\partial x}\left(\mu \frac{\partial v}{\partial x}\right)+\frac{\partial}{\partial y}\left(\mu \frac{\partial v}{\partial y}\right)+\frac{\partial}{\partial z}\left(\mu \frac{\partial v}{\partial z}\right)$
$\frac{\partial \rho w}{\partial t}+\frac{\partial \rho w u}{\partial x}+\frac{\partial \rho w v}{\partial y}+\frac{\partial \rho w^{2}}{\partial y}=-\frac{\partial p}{\partial z}+\rho g_{z}+\frac{\partial}{\partial x}\left(\mu \frac{\partial w}{\partial x}\right)+\frac{\partial}{\partial y}\left(\mu \frac{\partial w}{\partial y}\right)+\frac{\partial}{\partial z}\left(\mu \frac{\partial w}{\partial z}\right)$

In some cases more
complex meshes
are necessary for
efficient solution

Curvilinear, stretched
Unstructured, hybrid

Spatial derivatives in finite volume

 methodsThe generic transport equation in integral form:

$$
\frac{\partial \rho \phi}{\partial t}+\nabla \cdot(\rho \phi \vec{v})=\nabla \cdot \vec{S}_{A}+\nabla \cdot(\Gamma \nabla \phi)+S_{v}
$$

In which Φ is the mass concentration of a conserved quantity (eg. in $\mathrm{kg} / \mathrm{kg}$).
Spatial derivatives are always in $\operatorname{div}(\ldots), \operatorname{grad}(\ldots)$ or $\operatorname{div}(\operatorname{grad}(\ldots))$ forms.
We only need to look for the discrete approximations of these operators, which is done - in the case of finite volume method - on the basis of surface and volume integrals along with some spatial interpolations.

The numerical mesh around the cell having its center in point P :

Approximation of the divergence operator

From the volume integral of the divergence operator we can obtain the cell average of the divergence term.
The Gauss-Ostrogradskij theorem for a vector quantity \underline{u}

$$
\int_{V} \nabla \cdot \underline{u} d V=\oint_{A} \underline{u} \cdot d \underline{A}
$$

For simplicity, we denote components of \underline{u} vector by u_{i}. The cell-average of the divergence operator is now:

$$
\tilde{\nabla} \cdot u_{i}=\frac{\sum_{k} \int_{A_{k}} u_{\perp} d A}{V_{P}}
$$

in which A_{k} are the faces of the cell. The surface integral for each face is a scalar product:

The approximate Laplacian

$$
\Delta \phi=\nabla \cdot \nabla \phi
$$

When calculating the discrete approximation of the operator the gradient must be interpolated onto the face centroids. This is denoted by < > in the following formula:

$$
\tilde{\Delta} \phi=\tilde{\nabla} \cdot\left\langle\left.\tilde{\nabla}\right|_{i} \phi\right\rangle
$$

For most field variables - excepting for the pressure field - the face normal component of the gradient vector can be calculated on a more simple way: from ϕ values stored in the centers of the adjacent cells.
In this case the discrete form of the Laplacian operator can be calculated as a linear combination of ϕ_{p} and the neighboring ϕ values:

$$
\tilde{\Delta} \phi=A_{P} \phi_{P}+\sum A_{\ell} \phi_{\ell}
$$

In which A_{P} are constant values, depending only on the mesh parameters

