Numerical approximations of derivatives and integralls

Gergely Kristóf 5-th September 2012

An implicit differencing scheme with second order accuracy
$u_{j} = u_{j+1} + u'_{j+1}(-\Delta x) + u''_{j+1}\frac{\Delta x^{2}}{2} + o(\Delta x^{2})$
$u_{j-1} = u_{j+1} + u'_{j+1}(-2\varDelta x) + u''_{j+1} 2\varDelta x^2 + o(\varDelta x^2)$
$u_{j} - \frac{u_{j-1}}{4} = \frac{3}{4}u_{j+1} + \frac{u_{j+1}}{4}\left(-\frac{4x}{2}\right) + o(4x^{2})$
$u'_{j+1} = \frac{\frac{3}{2}u_{j+1} - 2u_j + \frac{1}{2}u_{j-1}}{\frac{4}{2}u_{j-1}} + o(\Delta x)$
Can be used for discretizing the boundary layer equation.

Approximation of the divergence operator

From the volume integral of the divergence operator we can obtain the cell average of the divergence term. The Gauss-Ostrogradskij theorem for a vector quantity \underline{u} :

$$\int_{V} \nabla \cdot \underline{u} \, dV = \oint_{A} \underline{u} \cdot d\underline{A}$$

For simplicity, we denote components of \underline{u} vector by u_μ . The cell-average of the divergence operator is now:

$$\widetilde{\nabla} \cdot u_i = \frac{\sum_{k} \int_{A_k} u_\perp dA}{V_P}$$

in which A_k are the faces of the cell. The surface integral for each face is a scalar product:

 $\int_{A_{i}} u_{\perp} dA = \sum_{i=1}^{3} u_{i} dA_{k,i}$ in which u_i is one component of <u>u</u> interpolated to the cell surface.

Gradient
ence of the Gauss-Ostrogradskij theorem:
$$\int_{V} \nabla \phi \, dV = \oint_{A} \phi \cdot d\underline{A}$$

The i-th component of the approximate gradient can be evaluated according to the following expression:

A direct consequ

$$\tilde{\nabla}\Big|_{i}\phi = \frac{\sum_{k}\int_{A_{k}}\phi dA_{i}}{V_{P}}$$

 \boldsymbol{A}_i is the i-th component of the surface vector in Descartes system.

The approximate Laplacian

$\varDelta \phi = \nabla \cdot \nabla \phi$

When calculating the discrete approximation of the operator the gradient must be interpolated onto the face centroids. This is denoted by < > in the following formula:

$$\widetilde{\varDelta}\phi = \widetilde{\nabla} \cdot \left\langle \widetilde{\nabla} \right|_{i} \phi \right\rangle$$

For most field variables - excepting for the pressure field – the face normal component of the gradient vector can be calculated on a more simple way: from ϕ values stored in the centers of the adjacent cells. In this case the discrete form of the Laplacian operator can be calculated as a linear combination of $\phi_{\rm b}$ and the neighboring ϕ values:

$$\widetilde{\Delta}\phi = A_P \phi_P + \sum A_\ell \phi_\ell$$

In which $A_{\rm P}$ are constant values, depending only on the mesh parameters.