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Numerical integration of the fluxes and the 

volume sources
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Interpolation of the fluxes must be at least as 
accurate as the integration scheme.
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Steady flow of a constant density fluid with heat conduction 
in a constant cross-section pipe
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u = constant

The analytic solution:

Pe (Peclet number)

Continuity:

Energy equation:

Application in 1D
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integral of fluxes:
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Discretization
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In a 3D case we would have 4 more F values.
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Application of the CDS scheme
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Face temperatures (Te and Tw) are obtained by a linear interpolation:

EEWWPP TATATA +=

The resultant linear equation for TP:

Since AP=AW+AE, the linear equation for AP can be regarded as a weighted 
average of the neighboring T values. TP cannot be an extreme value, if the „A” 
values are positive.
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We can solve this system by Gauss elimination.

The matrix of the linear system is a tridiagonal matrix which requires only
2n operations in the case of n cells. (This special case of the Gauss elimination
is called the Thomas algorithm). 

Solution of the system of linear 
algebraic equations

For 4 simulation cells:

Unfortunately, such an efficient direct solution is not possible in 2D and 3D

(iterative methods must be applied).
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Implementation in Excel macro

1. Similar solution is obtained with

different input parameters.

2. The error reduces with N2.

(Second order accuracy.)

3. Sometimes the solution 

oscillates. 

What is the condition for the 

onset of instabilities?
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Transportivity
By physical means:
TE must have a decreasing affect on TP for an increasing value of Pe, 
because the heat conduction is overridden by the adverse convective flux.

Does the numerical scheme behaves so?
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The cell Peclet number is the ratio of convective and conductive heat fluxes.
In the case of Pe∆x>>2 the value of AE can be a very large negative value. 

This is not sensible from physical point of view. 
This case is also numerically unstable. 

Upwind Differencing Scheme (UDS)

for u>=0:

for u<0:

PeWw TT,TT ==

EePw TT,TT ==

PW Eew

WA EA PA

( ) ww D,CMax +0 ee D),C(Max +− 0 EW AA +

Further numerical experiments...

Accuracy reduced to 1-st order.
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It is like if the heat conductivity grew.
Let’s substitute the numerical approximation of

the temperature gradient:
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Artificial diffusion

An important source of numerical errors. It came from the inaccurate interpolation:

The positivity of the “A”s must be ensured.
We need to apply unwinding only if the absolute value of Pe∆x is too high.:
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Hybrid Differencing Scheme (HDS)

It is of second order accuracy for
conduction dominated problems. 

(For small Pe∆x cases.)

by Spalding (1972)
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Second Order Upwinding (SOU)

We can interpolate
T within the simulation

cell by using its 
gradient:

Wall fluxes than can 

be than evaluated like:

Firstly:

Secondly:
gradients are limited on such a way that they shouldn’t
introduce oscillations. For details on the gradient limiters

please refer: C Hirsch, Numerical computation of internal
and external flows.

Gradients are calculated in 2 steps:

TP
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The numerical diffusion in practice

UDS

SOU

10x10 20x20 40x40 80x80Mesh size:

2D heat transport with zero heat conductivity ( λ=0).
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