Finite volume discretization

Gergely Kristóf
20-th September 2009

Discretization

$\oint_{A} \rho u T \cdot d A_{x}=\oint_{A} \frac{\lambda}{c_{v}} \frac{\partial T}{\partial x} \cdot d A_{x}$

$$
(\rho u T)_{e} A-(\rho u T)_{w} A=\left(\frac{\lambda}{c_{v}} \frac{\partial T}{\partial x}\right)_{e} A-\left(\frac{\lambda}{c_{v}} \frac{\partial T}{\partial x}\right)_{w} A
$$

The numerical
integral of fluxes

$$
\begin{aligned}
& \text { Shorthand } \\
& \text { notations: }
\end{aligned} \quad C_{e}=C_{w}=\rho u \quad D_{e}=D_{w}=\frac{\lambda}{c_{v} \Delta x}
$$

$$
C_{e} T_{e}-C_{w} T_{w}=D_{e}\left(T_{E}-T_{P}\right)-D_{w}\left(T_{P}-T_{W}\right)
$$

.. in a more simple form: $\quad F_{e}-F_{w}=0$,
in which: $F_{e}=C_{e} T_{e}-D_{e}\left(T_{E}-T_{P}\right)$ in the total flux. In a 3D case we would have 4 more F values.

Numerical integration of the fluxes and the volume sources

$$
\begin{gathered}
\oint_{A} \rho \underbrace{\rho \phi \underline{v}}_{\text {convective flux }} d \underline{A}=\oint_{A} \Gamma \nabla \cdot d \underline{A}+\int_{V} q_{\phi} d V \\
F_{e}=\int_{A} \underline{f} \cdot d \underline{A}=\left\langle f_{\perp}\right\rangle_{e} A_{e} \cong f_{e \perp} A_{e} \quad \text { 2-nd order accurate }
\end{gathered}
$$

$$
F_{e} \cong A_{e} \frac{1}{2}\left(f_{n e}+f_{s e}\right)_{\perp} \quad \begin{aligned}
& \text { 2-nd order accurate } \\
& \text { (trapeze method) }
\end{aligned}
$$

$$
F_{e} \cong \frac{A_{e}}{6}\left(f_{n e}+4 f_{e}+f_{s e}\right)_{\perp} \underset{(\text { Simpson formula) })}{4-\text { th order accurate }}
$$

$$
Q_{P} \cong \int_{V} q_{\phi} d V \cong q_{\phi, P} V_{P} \quad \text { 2-nd order accurate }
$$

Interpolation of the fluxes must be at least as accurate as the integration scheme.

Application of the CDS scheme

$$
C_{e} T_{e}-C_{w} T_{w}=D_{e}\left(T_{E}-T_{P}\right)-D_{w}\left(T_{P}-T_{W}\right)
$$

$$
\begin{gathered}
\text { Face temperatures (} \left.T_{e} \text { and } T_{w}\right) \text { are obtained by a linear interpolation: } \\
{\left[\frac{C_{e}}{2}\left(T_{P}+T_{E}\right)-D_{e}\left(T_{E}-T_{P}\right)\right]-\left[\frac{C_{w}}{2}\left(T_{W}+T_{P}\right)-D_{w}\left(T_{P}-T_{W}\right)\right]=0} \\
\text { The resultant linear equation for } T_{P}: \\
A_{P} T_{P}=A_{W} T_{W}+A_{E} T_{E} \\
\left.\begin{array}{c|c|c}
A_{W} & A_{E} & A_{P} \\
\hline \begin{array}{l|l|l}
D_{w}+C_{w} / 2 & D_{e}-C_{e} / 2 & A_{W}+A_{E}
\end{array} \\
D_{e}+D_{w}+C_{e} / 2-C_{w} / 2=A_{E}+A_{W}+C_{e}-C_{w}
\end{array}\right) \text { kontinuitás }
\end{gathered}
$$

Since $A_{P}=A_{W}+A_{E}$, the linear equation for A_{P} can be regarded as a weighted average of the neighboring T values. T_{P} cannot be an extreme value, if the „ $A "$ values are positive.

Solution of the system of linear algebraic equations

We can solve this system by Gauss elimination.
The matrix of the linear system is a tridiagonal matrix which requires only 2 n operations in the case of n cells. (This special case of the Gauss elimination is called the Thomas algorithm).
Unfortunately, such an efficient direct solution is not possible in 2D and 3D (iterative methods must be applied).

Implementation in Excel macro

1. Similar solution is obtained with different input parameters.
2. The error reduces with N^{2}. (Second order accuracy.)

$$
R e=\frac{\rho u L}{\mu}
$$

3. Sometimes the solution oscillates.
What is the condition for the $P e_{\Delta x}=\frac{\rho u \Delta x}{\lambda / c_{v}}>2$ onset of instabilities?

Artificial diffusion

An important source of numerical errors. It came from the inaccurate interpolation:

$$
T_{e}=T_{P}+\frac{\Delta x}{2} \frac{d T}{d x}+o(\Delta x)
$$

$$
F_{e}=C_{e} T_{P}+C_{e}\left(\frac{\Delta x}{2} \frac{d T}{d x}-D_{e}\left(T_{E}-T_{P}\right)\right.
$$

It is like if the heat conductivity grew.
$\begin{aligned} & \text { Let's substitute the numerical approximation of } \\ & \text { the temperature gradient: }\end{aligned} \quad \frac{d T}{d x}=\frac{T_{E}-T_{P}}{\Delta x}$

$$
D_{e}=\frac{\lambda}{c_{v} \Delta x} \longrightarrow \frac{\lambda_{\text {arif. }}}{c_{v} \Delta x}=\frac{\rho u}{2} \longrightarrow \lambda_{\text {arifi. }}=\frac{\rho u c_{v} \Delta x}{2}
$$

Transportivity

By physical means.
T_{E} must have a decreasing affect on T_{P} for an increasing value of Pe , because the heat conduction is overridden by the adverse convective flux. Does the numerical scheme behaves so?

$$
\begin{gathered}
A_{E}=D_{e}-C_{e} / 2 \\
C_{e}=\rho u \quad D_{e}=\frac{\lambda}{c_{v} \Delta x} \quad P e=\frac{\rho u L}{\lambda / c_{v}} \\
A_{E}=\frac{D_{e}}{2}\left(2-\frac{C_{e}}{D_{e}}\right)=\frac{D_{e}}{2}\left(2-\frac{\rho u \Delta x}{\lambda / c_{v}}\right)=\frac{D_{e}}{2}\left(2-P e_{\Delta x}\right)
\end{gathered}
$$

The cell Peclet number is the ratio of convective and conductive heat fluxes. In the case of $\mathrm{Pe}_{\Delta x} \gg 2$ the value of A_{E} can be a very large negative value. This is not sensible from physical point of view. This case is also numerically unstable.

Hybrid Differencing Scheme (HDS)

by Spalding (1972)
The positivity of the " A "s must be ensured.
We need to apply unwinding only if the absolute value of $\mathrm{Pe}_{\Delta x}$ is too high.:
$P e_{\Delta x} \leq-2 \quad F_{e}=C_{e} T_{E}$
$-2<P e_{\Delta x} \leq 2 \quad F_{e}=C_{e}\left[\frac{1}{2}\left(1+\frac{2}{P e_{\Delta x}}\right) T_{P}+\frac{1}{2}\left(1-\frac{2}{P e_{A t}}\right) T_{E}\right]$
$2<P e_{\Delta x} \quad F_{e}=C_{e} T_{P} \quad$ It is of second order accuracy for conduction dominated problems. (For small $\mathrm{Pe}_{\Delta x}$ cases.)

A_{W}	$A_{W} T_{W}+A_{E} T_{E}=A_{P} T_{P}$	
$\operatorname{Max}\left(C_{w},\left[D_{w}+\frac{C_{w}}{2}\right], 0\right)$	$\operatorname{Max}\left(-C_{e},\left[D_{e}-\frac{C_{e}}{2}\right], 0\right)$	$A_{W}+A_{E}$

Upwind Differencing Scheme (UDS)

Further numerical experiments...
Accuracy reduced to 1 -st order.

Second Order Upwinding (SOU)

$$
\begin{aligned}
& \begin{array}{l}
\text { We can interpolate } \\
\text { T within the simulation } \\
\text { cell by using its } \\
\text { gradient: }
\end{array} \\
& \quad \begin{array}{l}
\text { Wall fluxes than can } \\
\text { be than evaluated like: }
\end{array}
\end{aligned}
$$

Gradients are calculated in 2 steps:
Firstly: $\left.\quad \frac{d T}{d x}\right|_{P}=\frac{T_{e}{ }^{\prime}-T_{w}{ }^{\prime}}{\Delta x} \quad T_{e}{ }^{\prime}=\frac{T_{P}+T_{E}}{2}, \quad T_{w}{ }^{\prime}=\frac{T_{W}+T_{P}}{2}$
Secondly: $\quad \frac{d T}{d x} \left\lvert\, \begin{aligned} & \text { gradients are limited on such a way that they shouldn't } \\ & \text { introduce oscillations }\end{aligned}\right.$ Secondly: $\left.\quad \frac{d x}{d x}\right|_{P} \quad \begin{aligned} & \text { introduce oscillations. For details on the gradient limiters } \\ & \text { plase }\end{aligned}$ please refer: C Hirsch, Numerical computation of internal and external flows.

