Numerical approximations of derivatives and integralls

Gergely Kristóf
27-th September 2010

Different behavior...

Physical processes lead to a temporal equilibrium in many cases.

Explicit Euler method:

Euler method

From the Taylor polynomial we can express a differencing scheme of first order accuracy:
$u_{j}^{\prime}=\frac{u_{j+1}-u_{j}}{\Delta x}+o(1)$
Note that, the error term is one
degree of magnitude higher.

Taylor polynomial of the solution from point j to point $j+1$:
$u_{j+1}=u_{j}+u_{j}^{\prime} \Delta x+o(\Delta x)$
This is an integration scheme of first order accuracy.

When the differencial equation is given in the explicit form:
$u^{\prime}{ }_{j}=f\left(u_{j}, x_{j}\right)$
we can integral step by step, by assuming
$u_{j+1} \cong u_{j}+f\left(u_{j}, x_{j}\right) \Delta x$

$u_{j+1}=u_{j}+u^{\prime}{ }_{j} \Delta x+u^{\prime \prime}{ }_{j} \frac{\Delta x^{2}}{2}+o\left(\Delta x^{2}\right)$

$$
u_{j-1}=u_{j}+u_{j}^{\prime}(-\Delta x)+u_{j}^{\prime \prime} \frac{\Delta x^{2}}{2}+o\left(\Delta x^{2}\right)
$$

$$
u_{j}^{\prime}=\frac{u_{j+1}-u_{j-1}}{2 \Delta x}+o(\Delta x)
$$

Bacward Euler method

When F is evaluated in $\dot{i}+1$, we
may end up with a more
complicated expression for u This kind of discretization is called implicit.

Another first order scheme:
$u_{j}=u_{j+1}+u_{j+1}^{\prime}(-\Delta x)+o(\Delta x)$
from the backward Euler scheme we get:
$u^{\prime}{ }_{j+1}=\frac{u_{j+1}-u_{j}}{\Delta x}+o(1)$
Now, we assume the differential equation in the form:
$F\left(u^{\prime}{ }_{j+1}, u_{j+1}, x_{j+1}\right)=0$
$F\left(\frac{u_{j+1}-u_{j}}{\Delta x}, u_{j+1}, x_{j+1}\right) \cong 0$

An implicit differencing scheme with second order accuracy

$$
\begin{gathered}
u_{j}=u_{j+1}+u^{\prime}{ }_{j+1}(-\Delta x)+u^{\prime \prime}{ }_{j+1} \frac{\Delta x^{2}}{2}+o\left(\Delta x^{2}\right) \\
u_{j-1}=u_{j+1}+u^{\prime}{ }_{j+1}(-2 \Delta x)+u^{\prime \prime}{ }_{j+1} 2 \Delta x^{2}+o\left(\Delta x^{2}\right) \\
u_{j}-\frac{u_{j-1}}{4}=\frac{3}{4} u_{j+1}+u_{j+1}^{\prime}\left(-\frac{\Delta x}{2}\right)+o\left(\Delta x^{2}\right) \\
u_{j+1}^{\prime}=\frac{\frac{3}{2} u_{j+1}-2 u_{j}+\frac{1}{2} u_{j-1}}{\Delta x}+o(\Delta x)
\end{gathered}
$$

Adams-Basforth scheme

$$
\begin{aligned}
u_{j+1}= & u_{j}+u^{\prime}{ }_{j} \Delta x+u^{\prime \prime}{ }_{j} \frac{\Delta x^{2}}{2}+o\left(\Delta x^{2}\right) \\
& u^{\prime}{ }_{j-1}=u^{\prime}{ }_{j}+u^{\prime \prime}{ }_{j}(-\Delta x)+o(\Delta x) \\
u_{j+1}= & u_{j}+\frac{3}{2} u^{\prime}{ }_{j} \Delta x-\frac{1}{2} u^{\prime}{ }_{j-1} \Delta x+o\left(\Delta x^{2}\right)
\end{aligned}
$$

An explicit integrating scheme with second order accuracy It is often used for integrating the Navier-Stoket equations.

Approximation of the divergence operator

From the volume integral of the divergence operator we can obtain the cell average of the divergence term The Gauss-Ostrogradskij theorem for a vector quantity \underline{u} :

$$
\int_{V} \nabla \cdot \underline{u} d V=\oint_{A} \underline{u} \cdot d \underline{A}
$$

For simplicity, we denote components of \underline{u} vector by u_{i}. The cell-average of the divergence operator is now:

$$
\tilde{\nabla} \cdot u_{i}=\frac{\sum_{k} \int_{A_{k}} u_{\perp} d A}{V_{P}}
$$

in which A_{k} are the faces of the cell. The surface integral for each face is a scalar product:

$$
\int_{A_{k}} u_{\perp} d A=\sum_{i=1}^{3} u_{i} d A_{i}
$$

A 2 step $2^{\text {nd }}$ order explicit Runge-Kutta type scheme

$$
1^{\text {st }} \text { step: } \quad \text { Use the Euler method for geting into point } \mathrm{j}:
$$

$$
u_{j}=u_{j-1}+u_{j-1}^{\prime} \Delta x+o(\Delta x)
$$

Evaluate the derivative in point j :

$$
d=f\left(u_{j}+o(\Delta x), x_{j}\right)=f\left(u_{j}, x_{j}\right)+o(\Delta x)=u_{j}^{\prime}+o(\Delta x)
$$

$2^{\text {nd }}$ step: Use CDS scheme around point j :

$$
u_{j+1}=u_{j-1}+d 2 \Delta x+o\left(\Delta x^{2}\right)=u_{j-1}+u_{j}^{\prime} 2 \Delta x+o\left(\Delta x^{2}\right)
$$

Gradient

A direct consequence of the Gauss-Ostrogradskij theorem:

$$
\int_{V} \nabla \phi d V=\oint_{A} \phi \cdot d \underline{A}
$$

The i-th component of the approximate gradient can be evaluated according to the following expression:

$$
\left.\tilde{\nabla}\right|_{i} \phi=\frac{\sum_{k} \int_{A_{k}} \phi d A_{i}}{V_{P}}
$$

A_{i} is the i-th component of the surface vector in Descartes system.

Spatial derivatives in finite volume

 methods
The generic transport equation in integral form:

$$
\frac{\partial \rho \phi}{\partial t}+\nabla \cdot(\rho \phi \vec{v})=\nabla \cdot \vec{S}_{A}+\nabla \cdot(\Gamma \nabla \phi)+S_{v}
$$

In which Φ is the mass concentration of a conserved quantity (eg. in $\mathrm{kg} / \mathrm{kg}$).
Spatial derivatives are always in $\operatorname{div}(\ldots), \operatorname{grad}(\ldots)$ or $\operatorname{div}(\operatorname{grad}(\ldots))$ forms. We only need to look for the discrete approximations of these operators, which is done - in the case of finite volume method - on the basis of surface and volume integrals along with some spatial interpolations.

The numerical mesh around the cell having its center in point P :

The approximate Laplacian

$$
\Delta \phi=\nabla \cdot \nabla \phi
$$

When calculating the discrete approximation of the operator the gradient must be interpolated onto the face centroids. This is denoted by < > in the following formula:

$$
\tilde{\Delta} \phi=\tilde{\nabla} \cdot\langle\tilde{\nabla} \mid \phi\rangle
$$

For most field variables - excepting for the pressure field - the face normal component of the gradient vector can be calculated on a more simple way: rom ϕ values stored in the centers of the adjacent cells
in this case the discrete form of the Laplacian operator can be calculated as a linear combination of ϕ_{p} and the neighboring ϕ values:

$$
\tilde{\Delta} \phi=A_{P} \phi_{P}+\sum A_{\ell} \phi_{\ell}
$$

In which A_{p} are constant values, depending only on the mesh parameters.

