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Máté Márton
Lohász

Definition and
Properties of
Turbulence

Properties

High Re number

Disordered,
chaotic

3D phenomena

Unsteady

Continuum
phenomena

Dissipative

Vortical

Diffusive

Continuous
spatial spectrum

Has history

Notations

Summation
convention

NS as example

Statistical
description

Ensemble
average

Properties of the
averaging

Correlations

Reynolds
equations

Introduction

Why to deal with turbulence in a CFD course?

Most of the equations considered in CFD are model
equations

Turbulence is a phenomena which is present in ≈ 95% of
CFD applications

Turbulence can only be very rarely simulated and usually
has to be modeled

Basics of turbulence are required for the use of the models
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Our limitations, simplifications

Following effects are not considered:

density variation (ρ = const.)

Shock wave and turbulence interaction excluded
Buoyancy effects on turbulence not treated

viscosity variation (ν = const.)

effect of body forces (gi = 0)

Except free surface flows, gravity has no effect, can be
merged in the pressure
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Definition

Precise definition?

No definition exists for turbulence till now

Stability, chaos theory are the candidate disciplines to
provide a definition

But the describing PDE’s are much more complicated to
treat than an ODE

Last unsolved problem of classical physics (‘Is it possible
to make a theoretical model to describe the statistics of a
turbulent flow?’)

Engineers still can deal with turbulence
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Properties

Instead of a definition

Properties of turbulent flows can be summarized

These characteristics can be used:

Distinguish between laminar (even unsteady) and turbulent
flow
See the ways for the investigation of turbulence
See the engineering importance of turbulence
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High Reynolds number

Reynolds number

Re = UL
ν = Finertial

Fviscous

high Re number ←→ viscous forces are small

But inviscid flow is not turbulent

Role of Re

Reynolds number is the bifurcation (stability) parameter of
the flow

The Recr ≈ 2300 for pipe flows
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Disordered, chaotic

Terminology of dynamic systems

Strong sensitivity on initial (IC) and boundary (BC)
conditions

Statement about the ‘stability’ of the flow

PDE’s (partial differential equations) have infinite times
more degree of freedom (DoF) than ODE’s (ordinary
differential equations

Much more difficult to be treated
Can be the candidate to give a definition of turbulence

The tool to explain difference between turbulence and
‘simple’ laminar unsteadiness
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3D phenomena

Vortex stretching (see e.g. Advanced Fluid Dynamics) is
only present in 3D flows.

In 2D there is no velocity component in the direction of
the vorticity to stretch it.

Responsible for scale reduction

Responsible to vorticity enhancement

Averaged flow can be 2D

Unsteady flowfield must be 3D

The (Reynolds, time) averaged flowfield can be 2D

Spanwise fluctuations average to zero, but are required in
the creation of streamwise, wall normal fluctuations
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Unsteady

Turbulent flow is unsteady, but unsteadiness does not mean
turbulence

Stability of the unsteady flow can be different

In a unsteady laminar pipe flow (e.g.
500 < Reb(t) < 1000), the dependency on small
perturbations is smooth and continuous

In a unsteady turbulent pipe flow (e.g.
5000 < Reb(t) < 5500), the dependency on small
perturbations is strong
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Continuum phenomena

Can be described by the continuum Navier-Stokes (NS)
equations

I.e. no molecular phenomena is involve as it it was

Conclusions

1 Can be simulated by solving the NS equations (Direct
Numerical Simulation = DNS)

2 A smallest scale of turbulence exist, which is usually
remarkable bigger than the molecular scales

3 The are cases, where molecular effects are important
(re-entry capsule)

4 Turbulence is not fed from molecular resonations, but is a
property (stability type) of the solution of the NS
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Dissipative

Dissipative

Def: Conversion of mechanical (kinetic energy) to heat
(raise the temperature)

It is always present in turbulent flows

It happens at small scales of turbulence, where viscous
forces are important compared to inertia

It is a remarkable difference to wave motion, where
dissipation is not of primary importance
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Vortical

Turbulent flows are always vortical

Vortex stretching is responsible for scale reduction

Dissipation is active on the smallest scale
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Diffusive

Diffusive property, the engineering consequence

In the average turbulence usually increase transfers

E.g. friction factors are increased (e.g. λ)
Nusselt number is increased

In the average turbulence usually increase transfer
coefficients

Turbulent viscosity (momentum transfer) is increased
Turbulent heat conduction coefficient is increased
Turbulent diffusion coefficients are increased
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Continuous spatial spectrum

Spatial spectrum

Spatial spectrum is analogous to temporal one, defined by
Fourier transformation

Practically periodicity or infinite long domain is more
difficult to find

Visually: Flow features of every (between a bound) size
are present

Counter-example

Acoustic waves have spike spectrum, with sub and super
harmonics.
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Has history, flow dependent, THE TURBULENCE
does not exist

As formulated in the last unsolved problem of classical physics
no general rule of the turbulence could be developed till now.

No universality of turbulence has been discovered

Turbulent flows can be of different type, e.g.:

It can be boundary condition dependent
It depends on upstream condition (spatial history)
It depends on temporal history
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Notations

Directions

x : Streamwise

y : Wall normal, highest gradient

z : Bi normal to x , y spanwise

Corresponding velocities

u, v ,w

Index notation

x = x1, y = x2, z = x3

u = u1, v = u2, w = u3
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Notation (contd.)

Partial derivatives

∂j
def
= ∂

∂xj

∂t
def
= ∂

∂t
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Summation convention

Summation is carried out for double indices for the three
spatial directions.

Very basic example

Scalar product:

aibi
def
=

3∑
i=1

aibi (1)
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NS as example

Continuity eq.

∂ρ

∂t
+ div(ρv) = 0 (2)

if ρ = const., than
divv = 0 (3)

x component of the momentum eq.

∂vx

∂t
+vx

∂vx

∂x
+vy

∂vx

∂y
+vz

∂vx

∂z
= −1

ρ

∂p

∂x
+ν

(
∂2vx

∂x2
+
∂2vx

∂y2
+
∂2vx

∂z2

)
(4)
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NS in short notation

ρ = const. continuity

∂iui = 0 (5)

All the momentum equations

∂tui + uj∂jui = −1

ρ
∂ip + ν∂j∂jui (6)
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Statistical description

The ‘simple’ approach

Turbulent flow can be characterised my its time average and
the fluctuation compared to it

Problems of this approach

How long should be the time average?

How to distinguish between unsteadiness and turbulence?
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Statistical description
Examples

Flow examples

Turbulent pipe flow having (Re >> 2300), driven by a
piston pump (sinusoidal unsteadiness)

Von Kármán vortex street around a cylinder of Re = 105,
where the vortices are shedding with the frequency of
St = 0.2

Difficult to distinguish between turbulence and unsteadiness
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Ensemble average

Why to treat deterministic process by statistics?

NS equations are deterministic (at least we believe, not
proven generally)

I.e. the solution is fully given by IC’s and BC’s

Statistical description is useful because of the chaotic
behaviour

The high sensitivity to the BC’s and IC’s
Possible to treat result of similar set of BC’s and IC’s
statistically
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Statistics

Solution as a statistical variable

ϕ = ϕ(x , y , z , t, i) (7)

Index i corresponds to different but similar BC’s and IC’s

Density function

Shows the ‘probability’ of a value of ϕ.

f (ϕ) (8)

It is normed: ∫ ∞
−∞

f (ϕ) dϕ = 1 (9)
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Mean value

Expected value

ϕ(x , y , z , t) =

∫ ∞
−∞

ϕ(x , y , z , t) f
(
ϕ(x , y , z , t)

)
dϕ (10)

Average

ϕ(x , y , z , t) = lim
N→∞

1

N

N∑
i=1

ϕ(x , y , z , t, i) (11)
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Reynolds averaging

Reynolds decomposition

Since the ensemble averaging is called Reynolds averaging, the
decomposition is named also after Reynolds

ϕ = ϕ + ϕ′ (12)

Fluctuation

ϕ′
def
= ϕ− ϕ (13)
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Properties of the averaging

Linearity

aϕ+ bψ = aϕ + bψ (14)

Average of fluctuations is zero

ϕ′ = 0 (15)
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Properties of the averaging (contd.)

The Reynolds averaging acts only once

ϕ = ϕ (16)
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Deviation

Deviation

First characteristics of the fluctuations

σϕ =

√
ϕ′2 (17)

Also called RMS: ϕrms
def
= σϕ
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Connection between time and ensemble average

Ergodicity

Average is the same, deviation... ?

ϕ̂(T ) =
1

T

∫ T

0
ϕ dt (18)

ϕ̂(T ) =
1

T

∫ T

0
ϕ dt = ϕ (19)
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Correlations

Covariance

Rϕψ(x , y , z , t, δx , δy , δz , τ) =

ϕ′(x , y , z , t)ψ′(x + δx , y + δy , z + δz , t + τ)

Auto covariance

If ϕ = ψ covariance is called auto-covariance

E.g. Time auto covariance:

Rϕϕ(x , y , z , t, 0, 0, 0, τ) (20)
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Correlation

Correlation

Non-dimensional covariance

ρϕψ(x , y , z , t, δx , δy , δz , τ) =
Rϕψ

σϕ(x ,y ,z,t)σψ(x+δx ,y+δy ,z+δz,t+τ)

(21)
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Integral time scale

Integral time scale

Tϕψ(x , y , z , t) =

∫ +∞

−∞
ρϕψ(x , y , z , t, 0, 0, 0, τ) dτ (22)
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Taylor frozen vortex hypothesis

It is much more easy to measure the integral time scale
(hot-wire) than the length scale (two hot-wire at variable
distance)

Assumptions

The flow field is completely frozen, characterised by the
mean flow (U)

The streamwise length scale can be approximated, by
considering the temporal evolution of the frozen flowfield

Taylor approximated streamwise length scale

Lx = TU (23)
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Reynolds equations

We will develop the Reynolds average of the NS equations, we
will call the Reynolds equations
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RA Continuity

The original equation

∂iui = 0

Development:

∂iui =

= ∂iui

= ∂iui + u′i
= ∂iui

0 = ∂iui (24)

Same equation but for the average!
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Momentum equations

Derivation

Same rules applied to the linear term (no difference only )

Non-linear term is different
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Averaging of the non-linear term

uj∂jui =

= ∂j(ujui )

= ∂jujui

= ∂j(uj + u′j)(ui + u′i )

= ∂j

(
uj ui + ui u′j + uj u′i + u′ju

′
i

)
= ∂j

(
uj ui + u′ju

′
i

)
= ∂j

(
uj ui

)
+ ∂ju′ju

′
i

= uj ∂jui + ∂ju′iu
′
j (25)
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Reynolds equations

Continuity equation

∂iui = 0

Momentum equation

∂tui + uj ∂jui = −1

ρ
∂ip + ν∂j∂jui − ∂ju′iu

′
j (26)

Reynold stress tensor

u′iu
′
j (27)

Or multiplied by ρ, or −1 times
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Stresses

All stresses causing the acceleration

−1

ρ
p δij + ν∂jui − u′iu

′
j (28)
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Many scales of turbulence

Density variation visualise the different scales of turbulence in a
mixing layer

Goal: Try to find some rules about the properties of turbulence
at different scales
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Kinetic energy

Kinetic energy:

E
def
=

1

2
uiui (29)

Its Reynolds decomposition:

E =
1

2
uiui =

1

2
(ui ui + 2u′iui + u′iu

′
i ) (30)

Its Reynolds average

E =
1

2
(ui ui )︸ ︷︷ ︸

Ê

+
1

2
(u′iu

′
i )︸ ︷︷ ︸

k

= Ê + k (31)

The kinetic energy of the mean flow: Ê

The kinetic energy of the turbulence: k (Turbulent Kinetic
Energy, TKE)
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Richardson energy cascade
Vortex scales

High Re flow

Typical velocity of the flow U
Typical length scale of the flow L
Corresponding Reynolds number (Re = UL

ν ) is high

Turbulence is made of vortices of different sizes

Each class of vortex has:

length scale: l

velocity scale: u(l)

time scale: τ(l) = l/u(l)
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Richardson energy cascade
The big scales

Biggest vortices

size l0 ∼ L
velocity u0 = u0(l0) ∼ u′ =

√
2/3k ∼ U

⇒ Re = u0l0
ν is also high

Fragmentation of the big vortices

High Re corresponds to low viscous stabilisation

Big vortices are unstable

Big vortices break up into smaller ones
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Richardson energy cascade
To the small scales

Inertial cascade

As long as Re(l) is high, inertial forces dominate, the
break up continue

At small scales Re(l) ∼ 1 viscosity start to be important

The kinetic energy of the vortices dissipates into heat
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Richardson energy cascade
The poem

The poem of Richardson

Big whorls have
little whorls that feed
on their velocity, and
little whorls have
smaller whorls and so
on to viscosity.

Lewis Fry Richardson F.R.S.
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Richardson energy cascade
Connection between small and large scales

Dissipation equals production

Dissipation is denoted by ε

Because of the cascade can be characterised by large scale
motion

Dissipation: ε ∼ kin. energy
timescale @ the large scales

By formula: ε =
u2

0

l0/u0
=

u3
0

l0
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Transport equation of k
Definitions

NS symbol

For the description of development rules, it is useful to define
the following NS symbol:

NS(ui )
def
= ∂tui + uj∂jui = −1

ρ
∂ip + ν∂jsij︸ ︷︷ ︸

∂j tij

(32)

Let us repeat the development of the Reynolds equation!

NS(ui ) (33)

∂tui + uj ∂jui = ∂j

[
− 1

ρ
p δij + νs ij − u′iu

′
j

]
︸ ︷︷ ︸

Tij

(34)
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The TKE equation

Taking the trace of (NS(ui )− NS(ui ) )u′j(NS(uj)− NS(uj) )u′i

∂tk +uj ∂jk = −aijsij︸ ︷︷ ︸
Production

+ ∂j

[
u′j

(p′

ρ
+ k ′

)
− νu′i s ′ij

]
︸ ︷︷ ︸

Transport

− ε︸︷︷︸
Dissipation

(35)

Dissipation: ε
def
= 2νs ′ijs

′
ij

Anisotropy tensor: aij
def
= u′iu

′
j −

1
3 u′lu

′
l︸︷︷︸

2k

δij

Deviator part of the Reynolds stress tensor
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The TKE equation
Meaning of the terms

Production

Expression: P def
= −aijsij

Transfer of kinetic energy from mean flow to turbulence

The same term with opposite sign in the equation for kin.
energy of mean flow

The mechanism to put energy in the “Richardson” cascade

Happens at the large scales
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The TKE equation
Meaning of the terms (contd.)

Dissipation

Expression: ε
def
= 2νs ′ijs

′
ij

Conversion of kinetic energy of turbulence to heat

Work of the viscous stresses at small scale (s ′
ij)

The mechanism to draw energy from the “Richardson”
cascade

Happens at the small scales

P = ε if the turbulence is homogeneous (isotropic), as in the
“Richardson” cascade
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The TKE equation
Meaning of the terms (contd.)

Transport

Expression: ∂j

[
u′j

(
p′

ρ + k ′
)
− νu′i s ′ij

]
Transport of turbulent kinetic energy in space

The expression is in the form of a divergence (∂j�j)
Divergence can be reformulated to surface fluxes (G-O
theorem)
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Idea of RANS modelling

Solving the Reynolds averaged NS for the averaged
variables (u , v ,w , p )

The Reynolds stress tensor u′iu
′
j is unknown and has to be

modelled

Modelling should use the available quantities (u , v ,w , p )

Usefulness

If the averaged results are useful for the engineers

i.e. the fluctuation are not interesting “only” their effect
on the mean flow

If modelling is accurate enough
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Eddy Viscosity modell

Idea

Effect of turbulence is similar to effect of moving
molecules in kinetic gas theory

The exchange of momentum between layers of different
momentum is by the perpendicularly moving molecules

Viscous stress is computed by: Φij = 2νSij
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Eddy Viscosity modell (contd.)

In equations...

Only the deviatoric part is modelled

The trace (k) can be merged to the pressure (modified
pressure), and does not need to be modelled

Modified pressure is used in the pressure correction
methods to satisfy continuity (see Poisson eq. for pressure)

u′iu
′
j −

2

3
kδij = −2νtSij (36)
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Eddy Viscosity

Viscosity is a product of a length scale (l ′) and a velocity
fluctuation scale (u′)

The length scale has to be proportional to the distance,
what the fluid part moves by keeping its momentum

The velocity fluctuation scale should be related to the
velocity fluctuation caused by the motion of the fluid part

νt ∼ l ′u′ (37)

Newer results supporting the concept

Coherent structure view of turbulence, proves that there are
fluid parts (vortices) which keep their properties for a while,
when moving
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Máté Márton
Lohász

Scales of
Turbulence

Transport
equation of k

Modelling

Eddy Viscosity

Two equations
models

Boundary
Conditions

Inlet Boundary
Conditions

Two equations models

Length (l ′) and velocity fluctuation scales (u′) are
properties of the flow and not the fluid, they are changing
spatially and temporally

PDE’s for describing evolutions are needed

Requirements for the scales

Has to be well defined

Equation for its evolution has to be developed

Has to be numerically “nice”

Should be measurable easily to make experimental
validation possible
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k-e modell

Velocity fluctuation scale

TKE is characteristic for velocity fluctuation

It is isotropic (has no preferred direction)

u′ ∼
√

k (38)

Length scale

Integral length scale is well defined (see correlations)

No direct equation is easy to develop

Length scale is computed through the dissipation

Recall: ε =
u3

0
l0
⇒ l ′ ∼ k3/2

ε
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Equation for the eddy viscosity

νt = Cν
k2

ε
(39)

Cν is a constant to be determined by theory or experiments...

Our status...?

We have two unknown (k, ε) instead of one (νt)
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Máté Márton
Lohász

Scales of
Turbulence

Transport
equation of k

Modelling

Eddy Viscosity

Two equations
models

Boundary
Conditions

Inlet Boundary
Conditions

k model equation

Equation for k was developed, but there are unknown terms:

∂tk +uj ∂jk = −aijsij︸ ︷︷ ︸
Production

+ ∂j

[
u′j

(p′

ρ
+ k ′

)
− νu′i s ′ij

]
︸ ︷︷ ︸

Transport

− ε︸︷︷︸
Dissipation

(40)

Production

Production is directly computable, by using the eddy viscosity
hypothesis

P = −aijSij = 2νtSij Sij (41)



Turbulence
and its

modelling
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k model equation

Dissipation

Separate equation will be derived

Transport ∂jTj

Can be approximated by gradient diffusion hypothesis

Tj =
νt

σk
∂jk (42)

σk is of Schmidt number type to rescale νt to the required
diffusion coeff.

To be determined experimentally
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Summarised k model equation

∂tk + uj ∂jk = 2νtSij Sij − ε− ∂j

( νt

σk
∂jk
)

(43)

Everything is directly computable (except ε)

The LHS is the local and convective changes of k

Convection is an important property of turbulence (it is
appropriately treated by these means)
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Model equation for ε

It is assumed that it is described by a transport equation

Instead of derivation, based on the k equation

∂tε+ uj ∂jε = C1εP
ε

k
− C2εε

ε

k
− ∂j

( νt

σε
∂jε
)

(44)

Production and dissipation are rescaled ( εk ) and
“improved” by constant coefficients (C1ε, C2ε)

Gradient diffusion for the transport using Schmidt number
of σε

The ε equation is not very accurate! :)
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Constants of the standard k-e model

Cν = 0, 09 (45)

C1ε = 1, 44 (46)

C2ε = 1, 92 (47)

σk = 1 (48)

σε = 1, 3 (49)
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Example for the constants
Homogeneous turbulence

dtk = P − ε (50)

dtε = C1εP
ε

k
− C2εε

ε

k
(51)
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Example for the constants
Decaying turbulence

Since P = 0 , the system of equations can be solved easily:

k(t) = k0

(
t
t0

)−n

ε(t) = ε0

(
t
t0

)−n−1

n = 1
C2ε−1

n is measurable “easily”



Turbulence
and its

modelling
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k-ω modell

k equation is the same

ω
def
= 1

Cν
ε
k Specific dissipation, turbulence frequency (ω)

equation for ω similarly to ε equation

transport equation, with production, dissipation and
transport on the RHS

ω equation is better close to walls

ε equation is better at far-field

⇒ SST model blends the two type of length scale equation,
depending on the wall distance
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Máté Márton
Lohász

Scales of
Turbulence

Transport
equation of k

Modelling

Eddy Viscosity

Two equations
models

Boundary
Conditions

Inlet Boundary
Conditions

Required Boundary Conditions

The turbulence model PDE’s are transport equations, similar to
the energy equation

Local change

Convection

Source terms

Transport terms
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Inlet Boundary Conditions

Neumann or Dirichlet or mixed type of BC can be used
generally

Inlet is usually Dirichlet (specified value)

Final goal

How to prescribe k and ε or ω at inlet boundaries?
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Approximation of inlet BC’s

To use easy quantities, which can be guessed

Develop equations to compute k and ε or ω from quantities,
which can be guessed by engineers

Turbulence intensity

Tu
def
= u′

u =

√
2/3k

u
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Approximation of inlet BC’s

Length scale

l ′ ∼ k3/2

ε ⇒ ε

From measurement (using Taylor hypothesis)

Law of the wall (later)

Guess from hydraulic diameter l ≈ 0.07dH



Turbulence
and its

modelling
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Importance of inlet BC’s

If turbulence is governing a flow

Example: Atmospheric flows, where geometry is very
simple (flat land, hill) turbulence is complex

by spatial history of the flow
over rough surface
including buoyancy effects

Sensitivity to turbulence at the inlet has to be checked

the uncertainty of the simulation can be recognised
measurement should be included
the simulation domain should be extended upstream
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Wall boundary conditions

Both k and ε or ω require boundary conditions at the walls

Before introducing the boundary conditions and the
approximate boundary treatment techniques, some theory
about wall boundary layers is required
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Channel flow

Characteristics

Flow between two infinite plates ⇒ fully developed

Channel half width: δ

Bulk velocity: Ub
def
= 1

δ

∫ δ
0 u dy

Bulk Reynolds number: Reb
def
= Ub2δ

ν

Reb > 1800 means turbulence
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Channel flow (contd.)

Streamwise averaged momentum equation:

0 = νd2
y2u︸ ︷︷ ︸

dy τl

− dyu′v ′︸ ︷︷ ︸
dy τt

−1

ρ
∂xp (52)

The pressure gradient (dxpw ) is balanced by the two shear
stresses: τ = τl + τt
Its distribution is linear:

τ(y) = τw

(
1− y

δ

)
(53)
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Channel flow (contd.)
Two type of shear stresses

The two shear stresses

The viscous stress is dominant at the wall

Turbulent stress is dominant far from the wall

Both stresses are important in an intermediate region
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Two scales of the flow at the wall

Definitions

Friction velocity: uτ
def
=
√

τw
ρ =

√
− δ
ρdxpw

Friction Reynolds number: Reτ
def
= uτ δ

ν = δ
δν

Viscous length scale: δν
def
= uτ

ν

General law of the wall can be characterised:

dyu =
uτ
y

Φ
( y

δν
,
y

δ

)
(54)

Φ is a function to be determined!
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Law of the wall
In wall proximity

It can be assumed that only the wall scale is playing in the wall
proximity:

dyu =
uτ
y

ΦI

( y

δν

)
for y � δ (55)

Wall non-dimensionalisation �+

u+ def
=

u

uτ
(56)

y+ def
=

y

δν
(57)
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Law of the wall
Velocity

Viscous sub-layer

Only τl is counting

u+ = y+

for y+ < 5

Logarithmic layer

Viscosity is not in the scaling

ΦI = 1
κ for y � δ and y+ � 1

Log-law: u+ = 1
κ ln(y+) + B

From measurements: κ ≈ 0.41 and B ≈ 5.2
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Law of the wall
Velocity

Outer layer

Φ depends only on y/δ

In CFD we want to compute it for the specific cases! ⇒
We do not deal with it.
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Máté Márton
Lohász

Wall boundary
conditions

Channel flow

Two scales of
the flow at the
wall

The velocity
law of the wall

Reynolds stress
tensor at the
wall

TKE budget at
the wall

Numerical
treatment of
the wall layer,
actual BC’s

Large-Eddy
Simulation

Difference
between
modelling and
simulation

DNS

Concept of LES

Filtering

Filtered
equations

Eddy viscosity
model

Numerical
treatment

Boundary
Conditions

Reynolds stress tensor at the wall
uτ scaling

Sharp peaks around y+ = 20
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Reynolds stress tensor at the wall
k scaling

A platau is visible in the log law region.
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P/ε ≈ 1 in the log-law region

P/ε ≈ 1.8 close to the wall
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TKE budget at the wall

Turbulence is mainly produced in the buffer region
(5 < y+ < 30)

Turbulence is viscous diffused to the wall

Turbulence is strongly dissipated at the wall

Conclusion: ε = νd2
y2k @ y = 0



Turbulence
and its

modelling
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Numerical treatment of the wall layer, actual BC’s
Low Re treatment

In this treatment the complete boundary layer is resolved
numerically

When to do?

Low Reynolds number flow, where resolution is feasible

If boundary layer is not simple, can not be described by
law of the wall

How to do?

Use a turbulence model incorporating near wall viscous
effects

Use appropriate wall resolution (y+ < 1)
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Numerical treatment of the wall layer, actual BC’s
High Re treatment

In this treatment the first cell incorporates the law of the wall

When to do?

High Reynolds number flow, where it is impossible to
resolve the near wall region

If boundary layer is simple, can be well described by law of
the wall

How to do?

Use a turbulence models containing law of the wall BC

Use appropriate wall resolution (30 < y+ < 300)
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Numerical treatment of the wall layer, actual BC’s
Clever laws

The mixture of the two methods is developed:

to enable the engineer not to deal with the wall resolution

usually the mixture of the two method is needed,
depending on actual position in the domain

Resolution requirements

At any kind of treatment the boundary layer thickness (δ) has
to resolved by ≈ 20 cells to ensure accuracy.



Turbulence
and its

modelling
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Large-Eddy Simulation
Difference between modelling and simulation

Simulation

In the simulation the turbulence phenomena is actually resolved
by a numerical technique, by solving the describing equations

Modelling

In the modelling of turbulence the effects of turbulence are
modelled relying on theoretical and experimental knowledge.
In the computation a reduced description of turbulence is
carried out
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Direct Numerical Simulation = DNS

The NS equations (describing completely the turbulence
phenomena) are solved numerically

Difficulties

The scales where the dissipation is effective are very small

The size of the smallest scales are Reynolds number
dependent

Simulation is only possible for academic situations (e.g.:
HIT on 64 ·109 cells)
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Concept of LES

Compromise between RANS and DNS

RANS: feasible but inaccurate

DNS: accurate but infeasible

The large scales are import to simulate

The large scales of the turbulent flow are boundary
condition dependent, they needs to be simulated

The small scales of turbulence are more or less universal
and can be modelled ‘easily’

The removal of the small scales form the simulation
reduce the computational cost remarkably
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Filtering

How to develop the equations?
How to separate between large and small scales?

Spatial filtering, smoothing using a kernel function

〈ϕ〉 (xj , t)
def
=

∫
V

G∆(ri ; xj) ϕ(xj − ri , t)dri (58)
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Filtering kernel

G∆ is the filtering kernel with a typical size of ∆.

G∆ has a compact support (its definition set where the
value is non-zero is closed) in its first variable

To be the filtered value of a constant itself it has to be
true: ∫

V
G∆(ri ; xj)dri = 1 (59)

If G∆(ri ; xj) is homogeneous in its second variable and
isotropic in its first variable than G∆(|ri |) is a function of
only one variable
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Examples
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Physical space

Fluctuation:
ϕ̃

def
= ϕ− 〈ϕ〉 (60)

〈ϕ̃〉 6= 0, a difference compared to Reynolds averaging
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Spectral space

Recall: the cutting wavenumber (κc), below which modelling is
needed



Turbulence
and its

modelling
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Filtered equations

If using the previously defined (homogeneous, isotropic)
filter

Averaging and the derivatives commute (exchangeable)

∂i 〈ui 〉 = 0 (61)

∂t 〈ui 〉+ 〈uj〉 ∂j 〈ui 〉 = −1

ρ
〈p〉+ ν∂j∂j 〈ui 〉 − ∂jτij (62)

3D (because turbulence is 3D)

unsteady (because the large eddies are unsteady)
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Sub Grid Scale stress

τij is called Sub-Grid Scale stress SGS from the times when
filtering was directly associated to the grid

τij
def
= 〈uiuj〉 − 〈ui 〉 〈uj〉 (63)

It represents the effect of the filtered scales

It is in a form a stress tensor

Should be dissipative to represent the dissipation on the
filtered small scale
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Eddy viscosity model

Same as in RANS

τij −
1

3
τkkδij = −2νt 〈sij〉 (64)

Relatively a better approach since the small scales are
more universal

Dissipative if νt > 0.
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Smagorinsky model

νt = (Cs∆)2| 〈S〉 | (65)

| 〈S〉 | def
=
√

2sijsij (66)

Cs Smagorinsky constant to b determined

using spectral theory of turbulence
using validations on real flow computations

∆ to be prescribed

Determine the computational cost (if too small)
Determine the accuracy (if too big)
80% of the energy is resolved is a compromise
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Máté Márton
Lohász

Wall boundary
conditions

Channel flow

Two scales of
the flow at the
wall

The velocity
law of the wall

Reynolds stress
tensor at the
wall

TKE budget at
the wall

Numerical
treatment of
the wall layer,
actual BC’s

Large-Eddy
Simulation

Difference
between
modelling and
simulation

DNS

Concept of LES

Filtering

Filtered
equations

Eddy viscosity
model

Numerical
treatment

Boundary
Conditions

Scale Similarity model

Let us assume that the cuted small scales are similar to the
kept large scales!
A logical model:

τij
def
= 〈〈ui 〉 〈uj〉〉 − 〈〈ui 〉〉 〈〈uj〉〉 (67)



Turbulence
and its

modelling
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Properties

It is not dissipative enough

It gives feasible shear stresses (from experience)

Logical to combine with Smag. model!
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Dynamic approach

The idea is the same as in the scale similarity model

The theory is more complicated

Any model can be made dynamic

Dynamic Smagorinsky is widely used (combining the two
advantages)
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Boundary Conditions
Periodicity

Periodicity is used to model infinite long domain

The length of periodicity is given by the length scales of
turbulence
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Boundary Conditions
Inlet

Much more difficult than in RANS

Turbulent structures should be represented

Vortices should be synthesized
Separate precursor simulation to provide “real” turbulence
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Boundary Conditions
Wall

y+ ≈ 1 (68)

x+ ≈ 50 (69)

z+ ≈ 10− 20 (70)
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