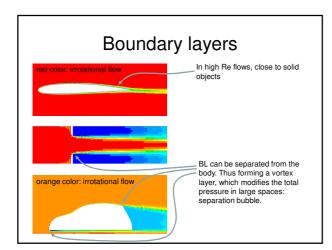
3. Boundary layers

Dr. Gergely Kristóf Department of Fluid Mechanics, BME February, 2014

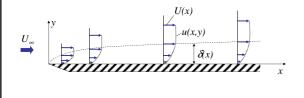


Boundary layer related phenomena Separation: -formation of free shear layer, -strong modification of the surface pressure distribution (increased head loss), -production and also reduction of the lift force acting on wings. -formation of the lift force acting on wings. -production and also reduction of the lift force acting on wings. -formation of the lift manager to coefficient (local heat transfer coef. skin friction) -formation of the lift force acting on wings. -formation of the lift manager to coefficient (local heat transfer coef. skin friction) -formation of tree shear layer, -increased BL thickness -increased It anisport coefficient (local heat transfer coef. skin friction) -formation of tree shear layer, -increased BL thickness -increased It anisport coefficient (local heat transfer coef. skin friction) -formation of tree shear layer, -irregular velocity fluctuations -increased BL thickness -increased BL thickness -increased It anisport coefficient (local heat transfer coef. skin friction) -formation of tree shear layer, -irregular velocity fluctuations -increased BL thickness -incre

The boundary layer concept

If the fluid viscosity is very small, then surface friction can effect the flow only in the immediate vicinity of the wall, in a layer of δ thickness.

We will discuss only steady 2D cases: $\vec{v} = u \, \vec{e}_x + v \, \vec{e}_y$



Boundary layer thickness

$$u(\delta) = 0.99U$$
 along an x=const.

For flat plates of 0 inclination: $\delta \cong 3.26 \, \delta^*$

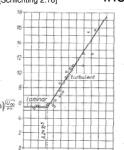
We can estimate δ assuming a balance between viscous and inertial forces at the edge of the boundary layer (y= δ). If V_0 is a constant value:

$$u \frac{\partial u}{\partial x} \cong v_0 \frac{\partial^2 u}{\partial y^2}$$

$$U_{\infty} \frac{U_{\infty}}{x} \sim v_0 \frac{U_{\infty}}{\delta^2}$$

$$Re_x^{-0.5}$$

Evolution of δ on a flat plate of $\mathbf{0}$ inclination [Schlichting 2.16]



 $Re_{x,crit} = 3.2 \times 10^5$

Two alternative definitions of the Reynolds number:

$$Re_x = \frac{U_{\infty}x}{v_0}$$

$$Re_{\delta} = \frac{U_{\infty}\delta}{v_0}$$

For laminar boundary layer:

$$\frac{Re_{\delta}}{Re_{x}} = \frac{\delta}{x} = 5.64 Re_{x}^{-0}$$

 $Re_{\delta} = 5.64 Re_{x}^{0.5}$

Problem #3.1

A) Compare the critical value of Re_{δ} (corresponding to laminar-turbulent transition) for a flat plate and in a circular pipe by assuming:

$$\delta \cong \frac{D}{2}$$

B) What is the dimensionless transition length $\boldsymbol{x}_{\text{crit}}\!/\!D$ at the critical value of Re_D?

To the solution

Boundary layer equation (1)

Reference length: $\,\ell\,$ (e.g. the length of the plate) Reference velocity: $\,U_{\infty}$

We estimate the order of magnitude of the dimensionless field variables

$$\varepsilon = \frac{\delta_{max}}{\ell}$$
 and 1

$$x' = \frac{x}{\ell} \sim 1$$
 $u' = \frac{u}{U_{\infty}} \sim 1$ $p' = \frac{p - p_{\infty}}{\rho_0 U_{\infty}^2} \sim ??$

$$p' = \frac{p - p_{\infty}}{\rho_0 U_{\infty}^2} \sim ??$$

$$y' = \frac{y}{\ell} \sim \varepsilon$$

$$v' = \frac{v}{U_{\cdots}} \sim \varepsilon$$

$$y' = \frac{y}{\ell} \sim \varepsilon$$
 $v' = \frac{v}{U_{\infty}} \sim \varepsilon$ $Re_{\ell} = \frac{U_{\infty} \ell}{v_0} \sim \frac{1}{\varepsilon^2}$

Problem #3.2

Please, estimate the order of magnitude of each term in the dimensionless continuity, and in the dimensionless equation of motion of a steady boundary layer flow!

To the solution

Boundary layer equation (2)

From the y component of the eq. of motion we can conclude: The external pressure penetrates the boundary layer, therefore the pressure depends only on the x coordinate.

The pressure gradient can be related to the bulk flow velocity:

$$p(x)$$
 $-\frac{1}{\rho_0} \frac{\partial p}{\partial x} = U \frac{dU}{dx}$

$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = U\frac{dU}{dx} + v_0\frac{\partial^2 u}{\partial y^2}$$

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$

Boundary layer equations (BLE) for laminar flow. Field variables: u(x,y) and v(x,y)

Self-similarity of the laminar boundary layer

$$\frac{\partial u'}{\partial x'} + \frac{\partial v'}{\partial x'} = 0$$

$$u'\frac{\partial u'}{\partial x'} + v'\frac{\partial u'}{\partial y'} = U'\frac{dU'}{dx'} + \frac{1}{Re_{\ell}}\frac{\partial^2 u'}{\partial y'^2}$$

We perform another scaling:

$$y'' = y' \sqrt{Re_{\ell}} = \frac{y}{\ell} \sqrt{\frac{U_{\infty}\ell}{v_0}}$$

$$v'' = v' \sqrt{Re_{\ell}} = \frac{v}{U} \sqrt{\frac{U_{\infty}}{v_{0}}}$$

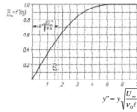
the dimensionless BLE reads:

$$\frac{\partial u'}{\partial x'} + \frac{\partial v''}{\partial x''} = 0$$

$$\frac{\partial u'}{\partial x'} + \frac{\partial v''}{\partial y''} = 0 \qquad \qquad u' \frac{\partial u'}{\partial x'} + v'' \frac{\partial u'}{\partial y''} = U' \frac{dU'}{dx'} + \frac{\partial^2 u'}{\partial y''^2}$$

The solutions of this form are independent from Re_l : $u'(\ x', y'')$

Flat plate of 0 inclination



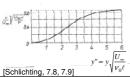
Solved by Blasius (1908).

$$\delta$$
: $y'' = 5.64$

$$\delta^*$$
: $y'' = 1.73$

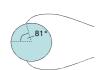
 $\delta = 3.26 \ \delta^*$

Due to the self-similarity, these profiles are independent from Re_x.



Flow past a cylinder

The position of the separation point must be independent from the Reynolds number. (As long as the external flow is independent from Re.)



$$x' = \frac{x}{\ell} \propto \text{angle } 0 \le x' \le \frac{\ell \pi}{2} \text{ indep.}$$

The external flow Is irrotational,

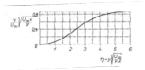
$$\frac{dU'}{dx'}$$
 indep. from Re_{l}

indep. from Re_l .

$$\frac{\partial u'}{\partial y''}\Big|_{y''=0} = 0$$
 indep. from Re_l .

Problem #3.3

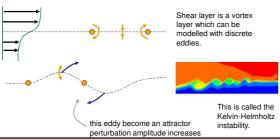
Please, calculate the displacement velocity $v(x,\delta)$ (y velocity profile at the edge of the boundary layer) over a flat plate of zero inclination for given \emph{l} , $\emph{Re}_\emph{l}$ and \emph{U}_∞ .



To the solution

The origin of turbulence

Any velocity profile with a point of inflexion is unstable. This can be proved also for inviscid fluids (inviscid instability).



In atmospheric boundary layers

This can be observed in atmospheric boundary layers, in the vicinity of cold

[Vincent van Gogh]

How can be a convex velocity profile, such as Blasius profile, is unstable?

The method of small perturbations (1)

The flow quantities are decomposed: $u = \overline{u} + \widetilde{u}$ $v = \overline{v} + \widetilde{v}$ $p = \overline{p} + \widetilde{p}$

The mean flow is a 2D quasi-steady boundary layer flow: $\overline{u}(y)$, $\overline{v} \approx 0$, $\overline{p}(x)$

Small perturbations (2D, time dependent): $\tilde{u}(x, y, t), \ \tilde{v}(x, y, t), \ \tilde{p}(x, y, t)$ Quadratic terms of the perturbation velocity are neglected. Pressure is devided by $\boldsymbol{\rho}.$

$$\frac{\partial \widetilde{u}}{\partial x} + \frac{\partial \widetilde{v}}{\partial y} = 0$$

$$\frac{\partial \widetilde{u}}{\partial t} + \overline{u} \frac{\partial \widetilde{u}}{\partial x} + \widetilde{v} \frac{\partial \overline{u}}{\partial y} = \underline{\frac{\partial \overline{p}}{\partial x}} - \frac{\partial \overline{p}}{\partial x} + \nu_0 \left(\frac{\partial^2 \widetilde{u}}{\partial x^2} + \frac{\partial^2 \overline{u}}{\partial y^2} + \frac{\partial^2 \widetilde{u}}{\partial y^2} \right) \quad 0 = -\frac{\partial \overline{p}}{\partial x} + \nu_0 \frac{\partial^2 \overline{u}}{\partial y^2}$$

$$\frac{\partial \widetilde{v}}{\partial t} + \overline{u} \frac{\partial \widetilde{v}}{\partial x} = -\frac{\partial \widetilde{p}}{\partial y} + v_0 \left(\frac{\partial^2 \widetilde{v}}{\partial x^2} + \frac{\partial^2 \widetilde{v}}{\partial y^2} \right)$$

$$0 = -\frac{\partial F}{\partial x} + v_0 \frac{\partial F}{\partial y^2}$$

The method of small perturbations (2)

$$\frac{\partial \widetilde{u}}{\partial x} + \frac{\partial \widetilde{v}}{\partial y} = 0$$

$$\frac{\partial \widetilde{u}}{\partial t} + \overline{u} \frac{\partial \widetilde{u}}{\partial x} + \widetilde{v} \frac{\partial \overline{u}}{\partial y} = -\frac{\partial \widetilde{p}}{\partial x} + v_0 \left(\frac{\partial^2 \widetilde{u}}{\partial x^2} + \frac{\partial^2 \widetilde{u}}{\partial y^2} \right)$$

$$\frac{\partial \widetilde{v}}{\partial t} + \overline{u} \frac{\partial \widetilde{v}}{\partial x} = -\frac{\partial \widetilde{p}}{\partial y} + v_0 \left(\frac{\partial^2 \widetilde{v}}{\partial x^2} + \frac{\partial^2 \widetilde{v}}{\partial y^2} \right)$$

The continuity equation is automatically fulfilled.

Furthermore, we can eliminate the pressure by taking the curl of the equation of motion. The result would be a forth order PDE for $\,\varPsi\,\dots$

Tollmien-Schlichting waves

We are looking for the solution in wave form:

$$\psi(x,y,t) = f(y) e^{i(\alpha x - \beta t)}$$

Note that, f(y) is complex, but physical meaning is only given for the real part.

$$\alpha = \frac{2\pi}{\lambda}$$
 α is a real quantity.

 $eta=eta_r+i\,eta_i$ eta_r : angular frequency, $oldsymbol{eta}_i$: amplification factor.

$$c = \frac{\beta}{\alpha} = c_r + i c_i$$

$$\widetilde{u} = \frac{\partial \psi}{\partial y} = f'(y)e^{i(\alpha x - \beta t)}$$

$$\tilde{v} = -\frac{\partial \psi}{\partial x} = -i \alpha f(y) e^{i(\alpha x - \beta t)}$$

Problem #3.4

Please, calculate the vorticity of the perturbation velocity field for Tollmien-Schlichting waves!

To the solution

Stability equation (1)

After substitution and elimination of the pressure, we obtain a 4-th order ordinary differential equation for f(y), which is called the Orr-Sommerfeld equation:

$$\left(\overline{u}-c\right)\left(f''-\alpha^2f\right)-\overline{u}'''f=-\frac{i\nu_0}{\alpha}\left(f''''-2\alpha^2f''+\alpha^4f\right)$$

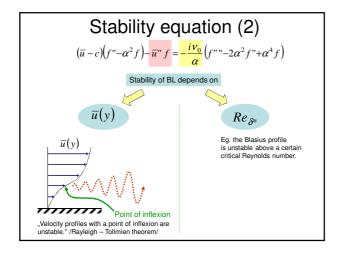
We can assume the following boundary conditions:

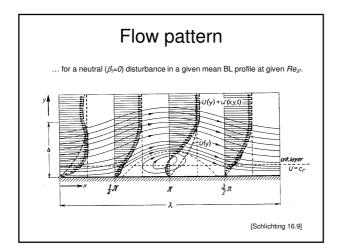
$$y = 0$$
: $\tilde{u} = \tilde{v} = 0 \implies f = f' = 0$

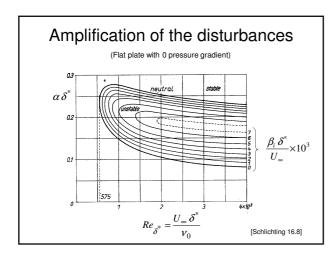
$$y \to \infty$$
: $\tilde{u} = \tilde{v} = 0 \implies f = f' = 0$

Dimensionless quantities:

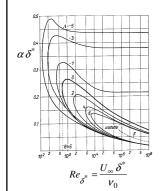
s quantities:
$$\frac{y}{\delta^*}, \ \frac{\tilde{u}}{U_{\infty}}, \ \frac{\tilde{v}}{V_{\infty}}, \ \frac{U_{\infty}\delta^*}{v_0}, \ \alpha\delta^*, \ \frac{\beta_i\delta^*}{U_{\infty}}$$







Effect of the pressure gradient



$$\Lambda = \frac{\delta^2}{v_0} \frac{dU}{dx}$$
 $\Lambda < 0$: diffuser $\Lambda > 0$: confuser

The pressure gradient is linked with the velocity gradient of the external flow:

$$\rho_0 U \frac{dU}{dx} = -\frac{dp}{dx}$$

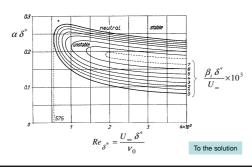
Adverse pressure gradient

Formation of an inflexion point on the mean velocity profile

High amplification factor for a wide range value of α.

Problem #3.5

Please, calculate the displacement thickness and the wavelength of highest amplification factor for a flat plate of zero inclination at Re $_x$ =200000, $_x$ =0.1 m. (This is roughly a speed of 108 km/h in standard atmosphere.)



Transition process

Instability of the laminar boundary layer: exponential growth of the amplitude of Tollmien-Schlichting waves.

Effects helping the transition:

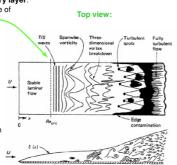
Natural transition The initial disturbances are

The initial disturbances are generated by the uneven surface. Amplification rate depends on dp/dx.

- 2. Bypass transition
 The transition is boosted by the
- turbulence of the main flow.

 3. Separation induces transition
 Laminar separation creates an
 inflexion in the u(y) profile which
- is unstable.

 4. Cross-flow transition
 Instability caused by a cross
 flow (w velocity component) e.g.
 past swept wings or rotating
 bodies.



[White: Viscous Fluid Flow, 1991]



Averaging

Turbulent motion is **irregular**: you will possibly measure N different values at the same flow time (time elapsed from the start of the experiment) and spatial coordinates if you repeat the experiment N times.

$$\overline{u} = \lim_{N \to \infty} \left(\frac{1}{N} \sum_{i=1}^{N} u_i \right)$$

Mean values in a quasi-steady flow can be approximated by the temporal average of a measured signal recorded during a sufficiently long time interval T:

$$\bar{u} \cong \frac{1}{T} \int_{t-T/2}^{t-T/2} u(t) dt$$

This way, any transient shorter than T (e.g. high frequency waves) will be filtered out.

Effect of turbulence on mean flow: Reynolds averaging

We decompose the instantaneous flow quantities to mean values and turbulent fluctuations (vectors indicated by underscore):

$$\underline{v} = \overline{\underline{v}} + \underline{v}'$$

$$p = \overline{p} + p'$$

Thus, by definition, the mean values of all fluctuating quantities are zero:

$$\overline{\underline{v}}' = 0$$
 and $\overline{p}' = 0$

The fluctuations are not small, therefore we cannot neglect second order terms. By taking the average of the Navier-Stokes equation for the instantaneous flow field, for incompressible flow we obtain:

$$\rho \frac{\partial \overline{\nu}}{\partial t} + \rho \overline{\nu} \cdot \nabla \overline{\nu} = -\nabla \overline{p} + \rho \underline{g} + \mu \Delta \overline{\nu} - \rho \overline{\nu} \cdot \nabla \overline{\nu}$$

NS equation for the mean flow

Reynolds stresses rising from the convective term

Reynolds stresses

The new force term can be expressed as a divergence of the Reynolds-stress tensor:

$$-\rho \overline{\underline{v}' \cdot \nabla \underline{v}'} = \nabla \cdot \boldsymbol{\tau}_R$$

$$\boldsymbol{\tau}_{R} = \begin{pmatrix} -\rho \overline{u^{'2}} & -\rho \overline{u^{'}v^{'}} & -\rho \overline{u^{'}w^{'}} \\ -\rho \overline{v^{'}u^{'}} & -\rho \overline{v^{'2}} & -\rho \overline{v^{'}w^{'}} \\ -\rho \overline{w^{'}u^{'}} & -\rho \overline{w^{'}v^{'}} & -\rho \overline{w^{'2}} \end{pmatrix}$$

It is a symmetric tensor. I general: 6 stress components need to be modelled.

Prandtl's mixing length model

1.) The fluctuation magnitude caused by a fluid parcel which is displaced over a distance l can be expressed as:

$$u' = \ell \frac{d\overline{u}}{dy}$$

in which the mixing length l can be properly approximated as a function of mean flow characteristics and geometrical parameters.

2.) All components of the fluctuating velocity are approximately the same:

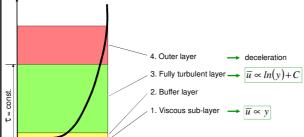
$$u' \cong v'$$

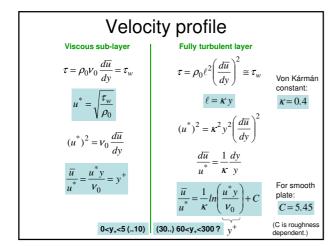
On the basis of the above assumptions we can calculate the components of the Reynolds stress tensor. Eg:

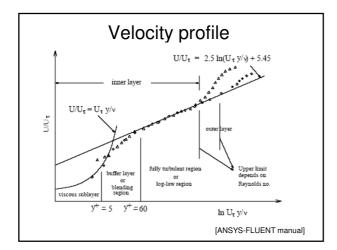
stress tensor. Eg:
$$\rho_0 \langle u' v' \rangle = \rho_0 \ell^2 \left| \frac{\partial \overline{u}}{\partial y} \right| \frac{\partial \overline{u}}{\partial y} = \rho_0 v_t \frac{\partial \overline{u}}{\partial y}$$

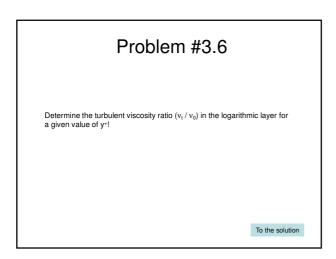
turbulent viscosity (not a constant)

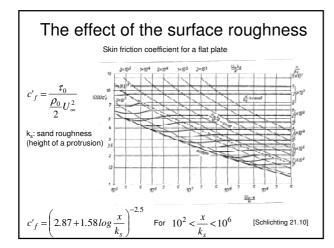
Structure of the turbulent boundary layer



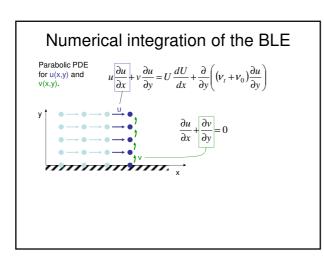








Problem #3.7 Determine the maximum magnitude of sand roughness for which a flat plate can be regarded as hydraulically smooth. The free stream velocity and the kinematical viscosity are given: $U_{\infty}=15\,\mathrm{m/s}, \quad \nu_0=1.5\times 10^{-5}\,\mathrm{m^2s^{-1}}$



Discretization

$$\text{Explicit scheme:} \quad \frac{\partial u}{\partial x}\bigg|_{i,j} = \frac{u_{i+1,j} - u_{i,j}}{\Delta x}$$

$$\begin{split} u_{i,j} & \underbrace{\frac{u_{i+1,j} - u_{i,j}}{\Delta x} + v_{i,j}}_{} \underbrace{\frac{u_{i,j+1} - u_{i,j-1}}{2 \, \Delta y}}_{} = U_i \underbrace{\frac{U_{i+1} - U_i}{\Delta x}}_{} + \\ & + \underbrace{\frac{1}{\Delta y}}_{} \left(V_{i,j+1/2} \underbrace{\frac{u_{i,j+1} - u_{i,j}}{\Delta y}}_{} - V_{i,j-1/2} \underbrace{\frac{u_{i,j} - u_{i,j-1}}{\Delta y}}_{} \right) \end{split}$$

$$\frac{1}{2} \left(\frac{u_{i+1,j} - u_{i,j}}{\Delta x} + \frac{u_{i+1,j-1} - u_{i,j-1}}{\Delta x} \right) + \underbrace{v_{i+1,j}}_{\Delta y} - v_{i+1,j-1} = 0$$

Numerical stability can be riached using very small $\Delta x.$

Discretization

$$\text{Implicit scheme:} \quad \frac{\partial u}{\partial x}\bigg|_{i+1,j} = \frac{u_{i+1,j} - u_{i,j}}{\Delta x}$$

$$\begin{split} u_{i,j} & \underbrace{\frac{u_{i+1,j} - u_{i,j}}{\Delta x} + v_{i,j}}_{} \underbrace{\frac{u_{i+1,j+1} - u_{i+1,j-1}}{2 \, \Delta y}}_{} = U_i \underbrace{\frac{U_{i+1} - U_i}{\Delta x}}_{} + \\ & + \underbrace{\frac{1}{\Delta y}}_{} \underbrace{\left(v_{i,j+1/2} \underbrace{\frac{u_{i+1,j+1} - u_{i+1,j}}{\Delta y}}_{} - \underbrace{u_{i+1,j}}_{} - \underbrace{u_{i+1,j} - u_{i+1,j-1}}_{} \right)}_{} \underbrace{\Delta y}_{} \end{split}$$

One tridiagonal system need to be solved in every new profile by using Thomas algorithm.

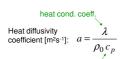
$$\frac{1}{2} \left(\frac{u_{i+1,j} - u_{i,j}}{\Delta x} + \frac{u_{i+1,j-1} - u_{i,j-1}}{\Delta x} \right) + \frac{v_{i+1,j}}{\Delta y} - v_{i+1,j-1} = 0$$

Solution of heat and mass transfer problems

When u and v are already known we can calculate T (temperature) and c (concentration) fields.

$$u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} = \frac{\partial}{\partial y} \left((a_t + a_0) \frac{\partial T}{\partial y} \right)$$

$$u \frac{\partial c}{\partial x} + v \frac{\partial c}{\partial y} = \frac{\partial}{\partial y} \left((D_t + D_0) \frac{\partial c}{\partial y} \right)$$



specific heat at const pressure

Transport coefficients are calculated from V_t :

 $D_{t} = \frac{V_{t}}{SC_{t}} \leftarrow \text{Turb. Schmidt number}$ (given, empirical val.)

Mixing length limitation

In the numerical model the turbulent viscosity $\boldsymbol{\nu}_t$ is computed according to the mixing length theory:

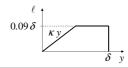
$$\mathbf{v}_{t} = \ell^{2} \left| \frac{\partial \overline{u}}{\partial y} \right|$$

 \emph{l} értékét a logaritmikus rétegen kívül korlátozni kell!

Escudier korreláció:

$$\ell = \max(\kappa y, 0.09 \,\delta)$$

 δ is determined from u(x,y).



Solution procedure

The profiles of u, v, T and c are known in a cross-section of the boundary-layer. The calculation of the next profiles involves the following steps:

$$\begin{split} \delta \rightarrow \ell \rightarrow \nu_t \rightarrow u \rightarrow v \\ \downarrow & \downarrow \ \ \, \downarrow \\ a_t \rightarrow T \\ D_t \rightarrow c \end{split}$$

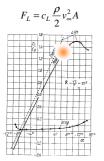
From the new u, T and c profiles the wall heat transfer coefficient, mass transfer coefficient and shear stress can be evaluated.

Facultative homework

- a) Implement a boundary-layer solver, which can incorporate variable external
- a) implement a boundary-layer solver, which can incorporate variable external flow velocity U(x) and option for using mixing length turbulence model. b) Determine u(x,y) and v(x,y) velocity distributions on the frontal surface of a cylinder at $Re_{b}=10000$ by calculating U(x) from the potential flow theory. The angular position can vary like: $0^{\circ} < \alpha < 100^{\circ}$. Determine the point of separation!
- c) Compare the u(y) profiles in laminar boundary layers of Re_D=10000 and Re_D=25000 at the angular position α=45° and prove the self-similarity of the dimensionless u'(y") and v"(y") profiles!

 d) Repeat the simulation for turbulent boundary-layer and determine the point
- of separation!

Award: 15 exam points



Requirements

High lift at low speed Low drag at high speed

For low speed takeoff and landing ability.

Avoiding BL separation

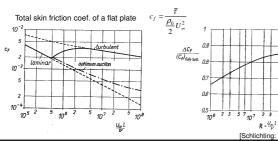
For minimum fuel consumption.

Delaying BL transition

Methods for delaying the transition

- Smoothing the surface
 Low intensity BL suction.
 Pushing the maximum thickness as close to the trailing edge as possible.

Boundary layer suction



NACA laminar profiles

[Schlichting: 17.9]

Curves 1,2 and 3: flat plate x 2.

Methods for avoiding separation	
1. Turbulence generation (passive or active)	
2. Intensive BL suction (active)	
3. BL refreshment (passive or active)	