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Speed of infinitesimal disturbances in 

still gas

dv
a

ρρ d+
dpp + p,ρ

dva −

ρρ d+
dpp +

a

p,ρ

a

ρd

dp
a =2

In steal ~5000 m/s
In water ~1500 m/s

In air ~340 m/s
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Momentum 
theorem:

Allievi theorem

Ideal gases

We also assume that the specific heats are constant.

Internal energy: Tcu v= Tc
p
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ρ

Enthalpy:
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Ratio of specific heats: eg. for all diatomic gases:
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The speed of sound in ideal 

gases

const.=
γρ

p

We assume isentropic compression, which is very fast 
and the effect of the friction is negligible, thus:

( )const.lnlnpln =− ργ

0=−
ρ

ρ
γ

d

p

dp

Eg. for air:

at 0°C:   a=331 m/s

at 20°C: a=343 m/s

TR
p

d
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γ

ρ
γ

ρ
==

TRa γ=

Nonlinear wave propagation
What if we generate another small disturbance?

dv2 2v adv

av >2 because:

- The second wave propagates in a gas flow of dv velocity.
- The second wave propagates in a gas flow having a higher
speed of sound: p↑  → T↑  →  a↑ .

The second wave will catch up to the first wave.

Shock waves
• Treated as a discontinuity 

(finite jump) of the state variables 
(p, ρ, T and a).

• Propagates faster than the small 
disturbances. (Only shock waves 
can do so.)

• Deceleration of supersonic flows 
are generally caused by shock 
waves.

• It is a dissipative process. 
(Causes head losses.)

A compression wave is 
steepening, and finally it 

becomes a shock wave:

Expansion waves 
behave in the opposite 

way:
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Analogy
Waves breaking in shallow water

Analogy
Hydraulic jump in a sink

Resonance in a closed pipe
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Crank angle φ [rad]

Pipe length:

6.05 m

Diameter:

36 mm

Piston displacement:

50 cm3.

At 29 Hz we measured:
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Propagation of small disturbances in 

subsonic and in supersonic flow
Positions of an object having velocity v at time instants 0,-1,-2 and -3 
seconds and also showing the wave fronts started in those instants:

v=0 v<a

v>av=a

subsonic

supersonic

Application
Schlieren image of a gun fire

[http://www.phschool.com/science/science_news/articles/revealing_covert_actions.html]

Mach cone
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M =Mach number:
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Problem #6.1

[An album of fluid motion]

Estimate the Mach number on the basis of the 
shadowgram below:

Spherical projectile To the solution

Analogy
Cerenkov radiation

Variable cross-section channel (1)

gas flow
x

A, v, p and ρ
depend only on x

0=++
ρ

ρd

v

dv

A

dA
Continuity:

ρ

dp
dvv −=Euler equation:

ρd

dp
a =2

Definition of a:

ρ

ρρ

ρ
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Variable cross-section channel (2)

( )
A

dA

v

dv
M =−12

Acceleration Deceleration

Subsonic    M<1 Convergent Divergent

Supersonic M>1 Divergent Convergent

If M=1 then dA=0: the area has an extreme value (minimum).

M>1M<1 M=1gas flow

Energy equation (1)

AdvpWQAdv)
v

u(dV)
v

u(
t

AAV
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∂
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WQAdv)
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h(

A

+=+∫
rr

ρ
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2

For steady state:

Q

W

A

V

1

2

Denoting the mass weighted 
average of the stagnation 

(total) enthalpy in cross-
sections 1 and 2 by ht,1 and ht,2 ,

it reads:

( ) WQqhh m,t,t +=− 12

Energy equation (2)

12 ,t,t hh =

1

2thin stream
tube

The stream tube can be 
regarded as a moving wall.

We apply the energy 

equation for steady flow 
under the following 
assumptions:

-the stream tube is thermally 
isolated (Q=0);

-the shear stress is 0 over 
the stream tube (W=0).

We obtain:
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Isentropic flow (1)

( )1−+= ρdpdudsTI. law of thermodynamics:
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for an ideal gas:
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ρ

ρd
R

T

dT
cv =
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Isentropic flow (2)
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Isentropic flow (3)

Reference states

pt p→0
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Isentropic flow (4)

constant
2

2

=+=
v

hht

22

22
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*t

vv
hh =+=

∞=== MMM 10

** av =

By applying the energy equation to a stream line we obtain:

Relations between the reference quantities:

(It is in analogy with the Bernoulli principle.)

Isentropic flow (5)

2

2v
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( ) TcTcTRa pp 1
1
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We can express temperature T as a function of M:

Isentropic flow (6)

121

2

1
1

−−







 −
+=








=

γ

γ

γ

γ

γ
M

T

T

p

p tt

Local pressure and density can be expressed in terms of 
the Mach number through the isentropic relations:
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For γγγγ=1.4: 0.83 0.53 0.63
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Problem #6.2

Please, calculate the maximum velocity for isentropic flow 
if γ=1.4, R=287 J/kg-K and Tt=1000 K are given!

To the solution

( )Mf
A

A

*

=

Isentropic flow (8)
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Isentropic flow (9)
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The inverse of the above 
function also gives the 

Mach number for a given 
A/A* .
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Problem #6.3

a) What is the optimum Aout/A* ratio of 
the nozzle of a rocket thruster 

designed for near ground flight, if the 
chamber pressure pt=10 barA , and 

γγγγ=1.3. Please, use the gas tables!

b) Calculate the mass flow-rate for 

Tt=1300 K a, R=462 J/kg-K and 
Aout=20 cm2!

c) Please, calculate the thrust!

pt

AoutA*

To the solution

known functions

of M. E.g:
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Thrust function
The momentum theorem for a variable cross-section steady 
channel flow reads:
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Normal shock waves (1)

2v 1v

111 T,,p ρ

1v

222 T,,p ρ

A steady flow
is observed!
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+Energy equation:

4 unknowns.
We can eliminate

one by using:
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Normal shock waves (2)
Mach number was the key to isentropic flows ... 

... we should try to solve this problem for M2(M1).

...
v
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Normal shock waves (3)
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It is a quadratic formula for
2
2M

( ) ( ) ( ) 0
2
2

4
2 =++ ......M...M

We can arrange it into the polynomial form:

Normal shock waves (4)
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This branch belongs to an expansion shock.
Is it valid?
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Normal shock waves (5)

Pressure ratio: ( )12
2

2
1

1
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+
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=
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Normal shock waves (6)

1

2
1

2

1

1

2

1

1

1

1

2

2

1

2

1

1

2

2

1

2

p

p

T

T

p

p

T

T

T

T

p

p

p

p

p

p

p

p

t

t

t

t

t

t
−

−

−









=



















==
γ

γ

γ

γ

γ

γ

 0

 1

 2

 3

 4

 5

 1  1.5  2  2.5  3

M1

pt2/pt1

T2/T1

ρ2/ρ1

p2/p1

M2

The entropy production
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−
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=

−
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−

For shocks:

The entropy change can be related to pressure and 
temperature ratios:
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e
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γ

γGenerally we can
state:

An expansion shock wave would lead to a decrease of 
entropy, therefore it does not exist.
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Rankine-Hugoniot relations

 1
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1

2

p

p

Weak shocks are almost isentropic.

... but they still propagate much faster than a.

Problem #6.4

There is a strong stationary normal 
shock in a divergent channel at the 
cross-section characterized by Aw. 

Ain

Aout
Aw

1 2

41.=γ 2=inM

Ain kPap 100= KTin 270=

3=inout A/A2=inw A/A

a) Calculate the Mach number at the
outlet (Mout)!

b) Please, determine the outlet 
pressure (pout)!

To the solution

Oblique shockwaves (1)

µµµµ δδδδββββ

M1>1 M1>1

v v
a

vw>a

flat plate

M2=M1

• Flow direction is changed by δ angle.

• In still medium, shockwaves propagate faster 
than the speed of sound, therefore: β>µ

• M2 can be > 1 for an oblique shock.
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Oblique shockwaves (2)

δδδδββββ

nv1

nv2

1v

tv1

tv2

2v

β

δβ −

βsinvv n 11 =

βcosvv t 11 =

( )δβ −= sinvv n 22

( )δβ −= cosvv t 22

Oblique shockwaves (3)

δδδδββββ

Control 
volume

nn vv 2211 ρρ =

( ) 122111 ppvvv nnn −=−ρ

( ) 02111 =− ttn vvvρ

( ) ( )2
2

2
22

2
1

2
11

2

1

2

1
tntn vvhvvh ++=++

tt vv 21 =

2
222

2
111 nn vpvp ρρ +=+

22

2
2

2

2
1

1
nn v

h
v

h +=+

nn vv 2211 ρρ =

Same formulae
are used for 

normal shocks!

Oblique shockwaves (4)

βsinMM n 11 = ( )δβ −= sinMM n 22

We take the normal components of the Mach numbers:

1
1

2

1

2

2
1

2
1

2
2

−
−

−
+

=

n

n

n

M

M

M

γ

γ
γ

( )nMf
p

p
1

1

2 = ( )nMg
T

T
1

1

2 = ( )nMh 1
1

2 =
ρ

ρ

The static flow quantities can be calculated by using the gas 
tables developed for normal shocks:

But the angle ββββ is still unknown!
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Oblique shockwaves (5)

t

n

v

v
tg

1

1=β ( )
t

n

v

v
tg

2

2=−δβ

nv1

nv2

tv1

tv2β

δβ −
tt vv 21 =

Now, we can plot β against M1 for given values of δ.

( ) 1

2

12

21

ρ

ρ

δβ

β
==

− tn

tn

vv

vv

tg

tg ( )
( ) 21

1
22

1

22
1

+−

+
=

βγ

βγ

sinM

sinM

2
1nM

density ratio for a 
normal shock:

M1

β

δ

Normal shock

Mach wave
1

1

M
sinarc

Oblique shockwaves (6)

( )
( )

( ) 21

1
2
1

2
1

+−

+
=

−
n

n

M

M

tg

tg

γ

γ

δβ

β
the δ iso-lines:

Oblique shockwaves (7)

• Above a minimum Mach number Mmin two β angles exist for 
a given δ. (βstrong > βweak) Only the weak wave can be 
observed in external flows. (The strong wave can only be 
produced in wind tunnels.)

• Mmin depends on δ. Bellow Mmin , no oblique shock is 
possible. A detached bow wave is formed.

• We can also define a maximum angle δmax, above which no 
oblique shockwave can exist for a given Mach number.
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Oblique shockwaves (8)

Eg. if we increase the thickness of the wing the bow shock 
can be detached, the flow goes through a normal shock, 

therefore a we can expect a much higher pressure close to 
the leading edge. 

M=constant

„streamlined body” „bluff body”

Shadowgram of a NASA reentry unit
Mercury Project 1959

Cosmic bow shocks
A Hubble image
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Earth's bow shock in solar wind

Problem #6.5

31 =M °= 8δ

?
p

p

t

t =
1

4

M1 M2

M1

δδδδ

δδδδ

31 =M

?
p

p

t

t =
1

2

?M =2 ?M =3 ?M =4

?M =2

a) b)Air flow

To the solution

What kind of wave is this?

Wave patter around an F22 aircraft
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High speed flow around an airfoil

Expansion waves with condensation

Prandtl-Meyer expansion (1)

Change of flow direction in supersonic flow (at least in 
isentropic cases) is directly linked to acceleration and 

deceleration.

Compression + deceleration Expansion + acceleration

We assume an isentropic process; thus we limit the 
analyses to expansion and to elementary compression 

cases.
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Prandtl-Meyer expansion (2)

dδβ
dδ

β

v v (v+dv) sin dδ

(v+dv) cos dδ - v

( )
( ) δ

δ
β

dsindvv

vdcosdvv
tg

+

−+
=

Prandtl-Meyer expansion (3)

β is the Mach angle:

If dδ→ 0, then cos dδ→ 1, and sin dδ→ dδ.
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=
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a
tg =

−
=
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Prandtl-Meyer expansion (4)
We can express dv/v in terms of the Mach number:
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Prandtl-Meyer expansion (5)
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This integral is the Prandtl-Meyer expansion function:
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=
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Problem #6.6

There is a high speed air flow 
through a convergent nozzle. 

Downstream from the nozzle, 
at a given point, the flow 

direction is 45°with respect to 
the axis. 
A) What is the Mach number at 

this point?
B) What is the maximum 

redirection angle (in the 
case op 0 ambient 
pressure)?

45°

To the solution

Hodograph (1)

Therefore we will use M*=v/a* instead of M=v/a :

*
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t
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=
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γ
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( ) 2

2
2

11

2
*

*

M

M
M

−−+
=

γγ

Inconveniences:
1) the length of the M vector → ∞ with increasing δ angle 

2) the length is not proportional to the velocity.
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Hodograph (2)
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The integral of dδ leads to the formula of an epicycloid.

Hodograph (3)

-0.4

-0.2

 0

 0.2

 0.4

 0  0.5  1  1.5  2

M*1

M*2

δ

δ and M1 are given.
- What is the resulting M2? 

- What is the wave direction?

δ

M*1

M*2The physical plane:

The hodograph plane:

Problem #6.7

Please, solve graphically the double reflection problem 
below. M1=1.28, δ=5°.

Determine M2, M3 and the wave directions!

M1
1

2
3

δ

To the solution
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Redirection of a channel flow

Fluctuating pressure with 
increased dissipation.

No reflected wave. 
(Only one expansion wave.)

Waves past curved surfaces (1)

Expansion Compression

The flow is isentropic only in 
the near wall region.

Waves past curved surfaces (2)

M=1.96

[An Album of Fluid Motion, 227]
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Supersonic jets

p-
p+ p+p- p-

p+ p+p- p- p-

[An Album of Fluid 

Motion, 168]
M=1.8

Over-expanded:

Under-expanded:

Virgin Galactic

Spaceship 2
January 2014.

Shock 

diamonds

Laval nozzle

p

x

pt

pt

pex

supersonic flow

trans-sonic flow

with a normal shock

subsonic flow

Shock tubes
The Riemann problem

14

14 23
contact

discontinuity

expansion

wave

shock-

wave

p2=p3

x

T

p

x

x

v

T1=T4

va3=va2
The expansion wave 
always has a somewhat 

higher pressure ratio.

An easy way to 
produce strong shocks 

or hypersonic flow.

Velocities in absolute frame
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Problem #6.8

What is the Mach number in absolute 
reference frame on the upstream and 

downstream side of the contact 
discontinuity, if the initial shock tube 

temperature is 
300 K and the initial pressure ratio is 
100?   (The shock tube operates with 

dry air.)

To the solution

NPL 2” gun tunnel

[L.Davies: On the Equilibrium 

Piston Technique in Gun 

Tunnels, 1968]


