6. Gas dynamics

Dr. Gergely Kristóf
Dept. of Fluid Mechanics, BME
\qquad
\qquad
\qquad
\qquad
\qquad
February, 2009.

Speed of infinitesimal disturbances in still gas		
Continuity:$A(a-d \nu)(\rho+d \rho)=a \rho A$		
$\underbrace{\rho^{\prime}}_{q_{m}} \underbrace{}_{d v}{ }^{(a)}$ In steal $\sim 5000 \mathrm{~m} / \mathrm{s}$		
${ }^{\text {mm }} \quad d p=\rho a d v \quad$ In water $\quad \sim 1500 \mathrm{~m} / \mathrm{s}$		
Allievi theorem In air $\sim 340 \mathrm{~m} / \mathrm{s}$		

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Ideal gases
Equation of state: $\quad \frac{p}{\rho}=R T$
We also assume that the specific heats are constant.
Internal energy: $\quad u=c_{v} T \quad$ Enthalpy: $\quad h=u+\frac{p}{\rho}=c_{p} T$
Specific gas constant: $R=c_{p}-c_{v}=\frac{R_{u}}{M} ; \quad R_{\text {air }}=\frac{8314}{29}=287\left[\frac{\mathrm{~J}}{\mathrm{~kg} \mathrm{~K}}\right]$
Ratio of specific heats: $\gamma=\frac{c_{p}}{c_{v}} \quad$ eg. for all diatomic gases:
$\gamma=1.4$

The speed of sound in ideal gases

We assume isentropic compression, which is very fast and the effect of the friction is negligible, thus: \qquad

$$
\frac{p}{\rho^{\gamma}}=\text { const. }
$$

$$
\ln p-\gamma \ln \rho=\ln (\text { const.) }
$$

$$
\frac{d p}{p}-\gamma \frac{d \rho}{\rho}=0
$$

$$
\frac{d p}{d \rho}=\gamma \frac{p}{\rho}=\gamma R T
$$

Eg. for air:
at $0^{\circ} \mathrm{C}$: $\quad a=331 \mathrm{~m} / \mathrm{s}$ $a=\sqrt{\gamma R T}$

$$
\text { at } 20^{\circ} \mathrm{C}: a=343 \mathrm{~m} / \mathrm{s}
$$

Nonlinear wave propagation

What if we generate another small disturbance?

$v_{2}>a$ because:

- The second wave propagates in a gas flow of $d v$ velocity. - The second wave propagates in a gas flow having a higher speed of sound: $p \uparrow \rightarrow T \uparrow \rightarrow a \uparrow$.

The second wave will catch up to the first wave.

Sh	ck waves
A compression wave is steepening, and finally it becomes a shock wave	- Treated as a discontinuity (finite jump) of the state variables (p, ρ, T and a). - Propagates faster than the small disturbances. (Only shock waves can do so.)
Expansion waves	- Deceleration of supersonic flows are generally caused by shock waves.
way:	- It is a dissipative process. (Causes head losses.)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
Diameter: ${ }_{36} \mathrm{~mm}$
Piston displacement:

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Problem \#6.1

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Variable cross-section channel (1) \qquad
Continuity:

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Variable cross-section channel (2)

	$\left(M^{2}-1\right) \frac{d v}{v}=\frac{d A}{A}$	
	Acceleration	Deceleration
Subsonic $M<1$	Convergent	Divergent
Supersonic $M>1$	Divergent	Convergent

If $M=1$ then $d A=0$: the area has an extreme value (minimum).

Energy equation (1)

\qquad
$\frac{\partial}{\partial t} \int_{V}\left(u+\frac{v^{2}}{2}\right) \rho d V+\oint_{A}\left(u+\frac{v^{2}}{2}\right) \rho \vec{v} d \vec{A}=Q+W-\oint_{A} p \vec{v} d \vec{A}$ \qquad

For steady state: \qquad

$$
\oint_{A}\left(h+\frac{v^{2}}{2}\right) \rho \vec{v} d \vec{A}=Q+W
$$

Denoting the mass weighted average of the stagnation (total) enthalpy in crosssections 1 and 2 by $h_{t, 1}$ and $h_{t, 2}$, it reads: \qquad
$\left(h_{t, 2}-h_{t, 1}\right) q_{m}=Q+W$ \qquad

Energy equation (2)

\qquad

```
luin stream 
We apply the energy equation for steady flow under the following
assumptions:
-the stream tube is thermally isolated ( \(\mathrm{Q}=0\) );
-the shear stress is 0 over the stream tube ( \(\mathrm{W}=0\) ).
We obtain: \(\quad h_{t, 2}=h_{t, 1}\)
```

\qquad
\qquad
\qquad
\qquad

$$
\begin{aligned}
& \text { ISentropic flow (1) } \\
& \text { I. law of thermodynamics: } \quad T d s=d u+p d\left(\rho^{-1}\right) \\
& \text { for an ideal gas: } \quad T d s=c_{v} d T-\frac{p}{\rho^{2}} d \rho=c_{v} d T-R T \frac{d \rho}{\rho} \\
& \text { for isentropic flow: } \\
& \qquad c_{v} \frac{d T}{T}=R \frac{d \rho}{\rho} \\
& \frac{R}{c_{v}}=\frac{c_{p}-c_{v}}{c_{v}}=\gamma-1 \\
& \frac{T_{2}}{T_{1}}=\left(\frac{\rho_{2}}{\rho_{1}}\right)^{\gamma-1} \longleftarrow \frac{d T}{T}=(\gamma-1) \frac{d \rho}{\rho}
\end{aligned}
$$

\qquad
\qquad
\qquad

Isentropic flow (2)

$$
\begin{gathered}
\frac{d T}{T}=(\gamma-1) \frac{d \rho}{\rho} \\
\frac{d p}{p}=\frac{d \rho}{\rho}+\frac{d T}{T} \\
\frac{d T}{T}=(\gamma-1)\left[\frac{d p}{p}-\frac{d T}{T}\right] \\
\gamma \frac{d T}{T}=(\gamma-1) \frac{d p}{p} \\
\frac{T_{2}}{T_{1}}=\left(\frac{p_{2}}{p_{1}}\right)^{\frac{\gamma-1}{\gamma}}
\end{gathered}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Isentropic flow (4)

\qquad
By applying the energy equation to a stream line we obtain:

$$
h_{t}=h+\frac{v^{2}}{2}=\text { constant }
$$

(It is in analogy with the Bernoulli principle.)
Relations between the reference quantities:

$$
\begin{array}{ccc}
M=0 & M=1 & M=\infty \\
\downarrow & \downarrow & \downarrow \\
h_{t}= & h_{*}+\frac{v_{*}^{2}}{2}=\frac{v_{\max }^{2}}{2} \\
& v_{*}=a_{*}
\end{array}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Isentropic flow (5)

\qquad
We can express temperature T as a function of M :

$$
\begin{gathered}
h_{t}=h+\frac{v^{2}}{2} \\
c_{p} T_{t}=c_{p} T+\frac{v^{2}}{2} \\
a^{2}=\gamma R T=\gamma c_{p}\left(1-\frac{1}{\gamma}\right) T=(\gamma-1) c_{p} T \\
\frac{a_{t}^{2}}{\gamma-1}=\frac{a^{2}}{\gamma-1}+\frac{v^{2}}{2} \\
\frac{a_{t}^{2}}{a^{2}}=\frac{T_{t}}{T}=1+\frac{\gamma-1}{2} M^{2}
\end{gathered}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Isentropic flow (6)

\qquad
Local pressure and density can be expressed in terms of the Mach number through the isentropic relations:

$$
\begin{aligned}
& \frac{p_{t}}{p}=\left(\frac{T_{t}}{T}\right)^{\frac{\gamma}{\gamma-1}}=\left(1+\frac{\gamma-1}{2} M^{2}\right)^{\frac{\gamma}{\gamma-1}} \\
& \frac{\rho_{t}}{\rho}=\left(\frac{T_{t}}{T}\right)^{\frac{1}{\gamma-1}}=\left(1+\frac{\gamma-1}{2} M^{2}\right)^{\frac{1}{\gamma-1}}
\end{aligned}
$$

The critical ratios (for the state of $M=1$):

$\frac{T_{*}}{T_{t}}=\frac{2}{\gamma+1}$	$\frac{p_{*}}{p_{t}}=\left(\frac{2}{\gamma+1}\right)^{\frac{\gamma}{\gamma-1}}$	$\frac{\rho_{*}}{\rho_{t}}=\left(\frac{2}{\gamma+1}\right)^{\frac{1}{\gamma-1}}$
For $\gamma=1.4:$	0.83	0.53

Problem \#6.2

Please, calculate the maximum velocity for isentropic flow if $\gamma=1.4, \mathrm{R}=287 \mathrm{~J} / \mathrm{kg}-\mathrm{K}$ and $\mathrm{T}_{\mathrm{t}}=1000 \mathrm{~K}$ are given!
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Isentropic flow (8)

\qquad
Mass flow-rate: $\quad q_{m}=\rho v A=\frac{\rho}{\rho_{t}} \rho_{t} M \frac{a}{a_{t}} a_{t} A$ \qquad
$q_{m}=M\left(1+\frac{\gamma-1}{2} M^{2}\right)^{-\left(\frac{1}{\gamma-1} \frac{1}{2}\right)} \rho_{t} a_{t} A$
$\frac{1}{\gamma-1}+\frac{1}{2}=\frac{2+\gamma-1}{2(\gamma-1)}=\frac{1}{2} \frac{\gamma+1}{\gamma-1}$
$q_{m}=M\left(1+\frac{\gamma-1}{2} M^{2}\right)^{-\frac{1}{2} \frac{\gamma+1}{\gamma-1}} \rho_{t} a_{t} A$
${ }^{\text {॥ }}$
$q_{m}=\left(1+\frac{\gamma-1}{2}\right)^{-\frac{1}{2} \frac{\gamma+1}{\gamma-1}} \rho_{t} a_{t} A_{*} \longrightarrow \frac{A}{A_{*}}=f(M)$ \qquad
\qquad
\qquad

Problem \#6.3

\rightarrow
a) What is the optimum $\mathbf{A}_{\text {out }} / \mathbf{A}$ r ratio of the nozzle of a rocket thruster designed for near ground flight, if the chamber pressure $p_{t}=10 \operatorname{bar}_{\mathrm{A}}$, and
A* $A_{\text {out }}$ $\gamma=1.3$. Please, use the gas tables!
b) Calculate the mass flow-rate for
$\mathrm{T}_{\mathrm{t}}=1300 \mathrm{~K} \mathrm{a}, \mathrm{R}=462 \mathrm{~J} / \mathrm{kg}-\mathrm{K}$ and
$A_{\text {out }}=20 \mathrm{~cm}^{2}$!
c) Please, calculate the thrust!

Thrust function

The momentum theorem for a variable cross-section steady channel flow reads:

$$
F_{\text {prop }}=\left(p_{2}+\rho_{2} v_{2}^{2}\right) A_{2}-\left(p_{1}+\rho_{1} v_{1}^{2}\right) A_{1}+p_{0}\left(A_{1}-A_{2}\right)
$$

$F=\left(p+\rho v^{2}\right)_{A}$
$\frac{F}{F_{*}}=\frac{p+\rho v^{2}}{p_{*}+\rho_{*} v_{*}^{2}} \frac{A}{A_{*}}=\frac{p}{p_{*}} \frac{1+\gamma M^{2}}{1+\gamma} \frac{A}{A_{*}}$
of M. E.g:

$$
\frac{p}{p_{*}}=\frac{p_{t}}{p_{*}} \frac{p}{p_{t}}=\left(\frac{\gamma+1}{2}\right)^{\frac{\gamma}{\gamma-1} /\left(1+\frac{\gamma-1}{2} M^{2}\right)^{\frac{\gamma}{\gamma-1}} \text {. } \mathrm{l} \text {. } \mathrm{g} \text { : }}
$$

Normal shock waves (1) \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Normal shock waves (2)
Mach number was the key to isentropic flows ...
... we should try to solve this problem for $M_{2}\left(M_{1}\right)$.
$\rho_{1} v_{1}=\ldots \quad \rightarrow \quad \frac{p_{1}}{R T_{1}} M_{1}\left(\gamma R T_{1}\right)^{1 / 2}=\ldots$
\qquad
\qquad
$p_{1}+\rho_{1} v_{1}^{2}=\ldots \rightarrow p_{1}\left(1+\frac{\rho_{1} v_{1}^{2}}{p_{1}}\right)=\ldots \rightarrow \quad p_{1}\left(1+\gamma \frac{v_{1}^{2}}{a_{1}^{2}}\right)=\ldots$
$p_{1}\left(1+\gamma M_{1}^{2}\right)=\ldots$
$c_{p} T_{1}+\frac{v_{1}^{2}}{2}=\ldots \longrightarrow T_{1}\left(1+\frac{\gamma R v_{1}^{2}}{2 c_{p} a_{1}^{2}}\right)=\ldots \longrightarrow T_{1}\left(1+\frac{\gamma-1}{2} M_{1}^{2}\right)=\ldots$ \qquad
\qquad

Normal shock waves (3)

(a)
(b)
(c) $\frac{p_{1}}{R T_{1}} M_{1}\left(\gamma R T_{1}\right)^{1 / 2}=\ldots \quad p_{1}\left(1+\gamma M_{1}^{2}\right)=\ldots \quad T_{1}\left(1+\frac{\gamma-1}{2} M_{1}^{2}\right)=\ldots$ $\mathrm{a}^{*} \mathrm{~b}^{-1 \mathrm{t}} \mathrm{c} \mathrm{c}^{0.5} \frac{M_{1}}{1+\gamma M_{1}^{2}} \sqrt{1+\frac{\gamma-1}{2} M_{1}^{2}}=\frac{M_{2}}{1+\gamma M_{2}^{2}} \sqrt{1+\frac{\gamma-1}{2} M_{2}^{2}}$

$$
M_{1}^{2}\left(1+\frac{\gamma-1}{2} M_{1}^{2}\right)\left(1+\gamma M_{2}^{2}\right)^{2}=M_{2}^{2}\left(1+\frac{\gamma-1}{2} M_{2}^{2}\right)\left(1+\gamma M_{1}^{2}\right)^{2}
$$

\qquad

It is a quadratic formula for M_{2}^{2}
We can arrange it into the polynomial form: \qquad

$$
M_{2}^{4}(\ldots)+M_{2}^{2}(\ldots)+(\ldots)=0
$$

\qquad

Normal shock waves (4)

\qquad
\qquad
\qquad

This branch belongs to an expansion shock.
\qquad Is it valid? \qquad
\qquad

Normal shock waves (5)
Pressure ratio:
(b) $\longrightarrow \quad \frac{p_{2}}{p_{1}}=\frac{1+\gamma M_{1}^{2}}{1+\gamma M_{2}^{2}}=f\left(M_{1}\right)$

Temperature ratio: (c) $\longrightarrow \quad \frac{T_{2}}{T_{1}}=\frac{1+\frac{\gamma-1}{2} M_{1}^{2}}{1+\frac{\gamma-1}{2} M_{2}^{2}}=g\left(M_{1}\right)$
$\frac{\rho_{2}}{\rho_{1}}=\frac{p_{2}}{p_{1}}\left(\frac{T_{2}}{T_{1}}\right)^{-1}=h\left(M_{1}\right)$

Normal shock waves (6)

$\frac{p_{t 2}}{p_{t 1}}=\frac{\frac{p_{t 2}}{p_{2}}}{\frac{p_{t 1}}{p_{1}}} \frac{p_{2}}{p_{1}}=\frac{\left(\frac{T / 2}{T_{2}}\right)^{\frac{\gamma}{\gamma-1}}}{\left(\frac{T / 11}{T_{1}}\right)^{\frac{\gamma}{\gamma-1}} \frac{p_{2}}{p_{1}}=\left(\frac{T_{1}}{T_{2}}\right)^{\frac{\gamma}{\gamma-1}} \frac{p_{2}}{p_{1}}}$

The entropy production

The entropy change can be related to pressure and temperature ratios:

$$
T d s=d h-\frac{d p}{\rho}=c_{p} d T-R T \frac{d p}{p}
$$

$$
\frac{d s}{R}=\frac{\gamma}{\gamma-1} \frac{d T}{T}-\frac{d p}{p}
$$

Generally we can
state:

$$
e^{\frac{s_{2}-s_{1}}{R}}=\left(\frac{T_{2}}{T_{1}}\right)^{\frac{\gamma}{\gamma-1}} \frac{p_{1}}{p_{2}} \rightarrow e^{\frac{\text { For shocks: }}{\frac{s_{2}-s_{1}}{R}}=\frac{p_{t 1}}{p_{t 2}}}
$$

\qquad
\qquad
\qquad

$$
\frac{s_{2}-s_{1}}{R}=\frac{\gamma}{\gamma-1} \ln \frac{T_{2}}{T_{1}}-\ln \frac{p_{2}}{p_{1}}
$$

\qquad
\qquad

An expansion shock wave would lead to a decrease of entropy, therefore it does not exist.

Rankine-Hugoniot relations

Change of the thermodynamical state

Weak shocks are almost isentropic.
... but they still propagate much faster than \boldsymbol{a}.

Problem \#6.4

There is a strong stationary norma shock in a divergent channel at the cross-section characterized by A_{w}.
$\gamma=1$.
$M_{i n}=2$
$p_{\text {in }}=100 \mathrm{kPa} a_{A}$
$T_{\text {in }}=270 \mathrm{~K}$
$A_{w} / A_{\text {in }}=2 \quad A_{\text {out }} / A_{\text {in }}=3$
a) Calculate the Mach number at the outlet ($M_{\text {out }}$)
b) Please, determine the outlet pressure ($p_{\text {out }}$)!

To the solution

Oblique shockwaves (1) \qquad
\qquad
\qquad
\qquad
\qquad

- Flow direction is changed by δ angle.
- In still medium, shockwaves propagate faster than the speed of sound, therefore: $\beta>\mu$
- M_{2} can be >1 for an oblique shock.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Oblique shockwaves (2)

\qquad

$$
\begin{aligned}
& v_{1 n}=v_{1} \sin \beta \\
& v_{1 t}=v_{1} \cos \beta \\
& v_{2 n}=v_{2} \sin (\beta-\delta) \\
& v_{2 t}=v_{2} \cos (\beta-\delta)
\end{aligned}
$$

Oblique shockwaves (3)

Control volume

$$
\beta \delta
$$

$$
\begin{aligned}
& \rho_{1} v_{1 n}=\rho_{2} v_{2 n} \\
& \rho_{1} v_{1 n}\left(v_{1 n}-v_{2 n}\right)=p_{2}-p_{1} \\
& \rho_{1} v_{1 n}\left(v_{1 t}-v_{2 t}\right)=0 \longrightarrow v_{1 t}=v_{2 t} \\
& h_{1}+\frac{1}{2}\left(v_{1 n}^{2}+y_{1 t}^{2}\right)=h_{2}+\frac{1}{2}\left(v_{2 n}^{2}+y_{2 t}^{2}\right) \\
& \left\{\begin{array}{l}
\rho_{1} v_{1 n}=\rho_{2} v_{2 n} \\
p_{1}+\rho_{1} v_{1 n}^{2}=p_{2}+\rho_{2} v_{2 n}^{2} \\
h_{1}+\frac{v_{1 n}^{2}}{2}=h_{2}+\frac{v_{2 n}^{2}}{2}
\end{array}\right.
\end{aligned}
$$

Same formulae are used for normal shocks!

Oblique shockwaves (4)

We take the normal components of the Mach numbers:

$$
M_{1 n}=M_{1} \sin \beta \quad M_{2 n}=M_{2} \sin (\beta-\delta)
$$

The static flow quantities can be calculated by using the gas tables developed for normal shocks:

$$
\begin{gathered}
M_{2 n}^{2}=\frac{M_{1 n}^{2}+\frac{2}{\gamma-1}}{\frac{2 \gamma}{\gamma-1} M_{1 n}^{2}-1} \\
\frac{p_{2}}{p_{1}}=f\left(M_{1 n}\right) \quad \frac{T_{2}}{T_{1}}=g\left(M_{1 n}\right) \quad \frac{\rho_{2}}{\rho_{1}}=h\left(M_{1 n}\right)
\end{gathered}
$$

But the angle β is still unknown!

Oblique shockwaves (5)

Now, we can plot β against M_{1} for given values of δ.

Oblique shockwaves (6)

$$
\frac{\operatorname{tg} \beta}{\operatorname{tg}(\beta-\delta)}=\frac{(\gamma+1) M_{1 n}^{2}}{(\gamma-1) M_{1 n}^{2}+2} \quad \text { the } \delta \text { iso-lines: }
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Oblique shockwaves (7)

- Above a minimum Mach number $\mathrm{M}_{\text {min }}$ two β angles exist for a given δ. ($\left.\beta_{\text {strong }}>\beta_{\text {weak }}\right)$ Only the weak wave can be observed in external flows. (The strong wave can only be produced in wind tunnels.)
- $M_{\text {min }}$ depends on δ. Bellow $M_{\text {min }}$, no oblique shock is possible. A detached bow wave is formed.
- We can also define a maximum angle $\delta_{\text {max }}$, above which no oblique shockwave can exist for a given Myach number.

Oblique shockwaves (8) \qquad

\qquad
\qquad
\qquad
\qquad
Eg. if we increase the thickness of the wing the bow shock can be detached, the flow goes through a normal shock, therefore a we can expect a much higher pressure close to the leading edge.
\qquad
\qquad

Shadowgram of a NASA reentry unit
Mercury Project 1959

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Cosmic bow shocks

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

High speed flow around an airfoil

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Expansion waves with condensation \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Prandtl-Meyer expansion (1)

\qquad
Compression + deceleration Expansion + acceleration

\qquad
\qquad

Change of flow direction in supersonic flow (at least in \qquad isentropic cases) is directly linked to acceleration and deceleration.

We assume an isentropic process; thus we limit the analyses to expansion and to elementary compression cases.

Prandtl-Meyer expansion (2)

$$
\operatorname{tg} \beta=\frac{(v+d v) \cos d \delta-v}{(v+d v) \sin d \delta}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Prandtl-Meyer expansion (3)

\qquad
If $d \delta \rightarrow 0$, then $\cos d \delta \rightarrow 1$, and $\sin d \delta \rightarrow d \delta$.

$$
\operatorname{tg} \beta=\frac{d v}{v d \delta}
$$

β is the Mach angle:

$\operatorname{tg} \beta=\frac{a}{\sqrt{v^{2}-a^{2}}}=\frac{1}{\sqrt{M^{2}-1}}=\frac{d v}{v d \delta} \quad \longrightarrow d \delta=\frac{d v}{v} \sqrt{M^{2}-1}$

Prandtl-Meyer expansion (4)

\qquad
We can express $d v / v$ in terms of the Mach number:

$$
\begin{gathered}
\frac{d v}{v}=\frac{d M}{M}+\frac{1}{2} \frac{d T}{T} \\
\frac{T_{t}}{T}=1+\frac{\gamma-1}{2} M^{2} \quad \text { in which } T_{t}=\text { constant } \\
-\frac{T_{t}}{T^{2}} d T=(\gamma-1) M d M \\
\frac{d T}{T}=-\frac{(\gamma-1) M^{2}}{1+\frac{\gamma-1}{2} M^{2}} \frac{d M}{M} \\
\frac{d v}{v}=\frac{1+\frac{\gamma-1}{2} M^{2}-\frac{\gamma-1}{2} M^{2}}{1+\frac{\gamma-1}{2} M^{2}} \frac{d M}{M}=\frac{1}{1+\frac{\gamma-1}{2} M^{2}} \frac{d M}{M} \\
\hline
\end{gathered}
$$

Prandtl-Meyer expansion (5)

$$
\begin{array}{r}
d \delta=\frac{d v}{v} \sqrt{M^{2}-1} \quad \frac{d v}{v}=\frac{1}{1+\frac{\gamma-1}{2} M^{2}} \frac{d M}{M} \\
d \delta=\frac{\sqrt{M^{2}-1}}{1+\frac{\gamma-1}{2} M^{2}} \frac{d M}{M} \longrightarrow \delta=\int_{1}^{M} \frac{\sqrt{M^{2}-1}}{1+\frac{\gamma-1}{2} M^{2}} \frac{d M}{M}
\end{array}
$$

This integral is the Prandtl-Meyer expansion function:

$$
\delta=\sqrt{\frac{\gamma+1}{\gamma-1}} \operatorname{ttg}\left(\sqrt{\frac{\gamma-1}{\gamma+1}\left(M^{2}-1\right)}\right)-\operatorname{atg}\left(\sqrt{M^{2}-1}\right)
$$

Problem \#6.6

There is a high speed air flow through a convergent nozzle Downstream from the nozzle, at a given point, the flow direction is 45° with respect to the axis.
A) What is the Mach number at this point?
B) What is the maximum redirection angle (in the case op 0 ambient \qquad pressure)?

Hodograph (1)

\qquad
Inconveniences:

1) the length of the M vector $\rightarrow \infty$ with increasing δ angle
2) the length is not proportional to the velocity. \qquad
Therefore we will use $M^{*}=v / a^{*}$ instead of $M=v / a$:

$$
\begin{gathered}
M^{* 2}=\frac{v^{2}}{a^{* 2}}=\frac{v^{2}}{a^{2}} \frac{a^{2}}{a^{* 2}}=M^{2} \frac{T}{T^{*}}=M^{2} \frac{T}{T_{t}} \frac{T_{t}}{T^{*}} \\
M^{* 2}=M^{2}\left(1+\frac{\gamma-1}{2} M^{2}\right)^{-1} \frac{\gamma+1}{2} \\
M^{* 2}=\frac{(\gamma+1) M^{2}}{2+(\gamma-1) M^{2}} \quad \text { and } \quad M^{2}=\frac{2 M^{* 2}}{\gamma+1-(\gamma-1) M^{* 2}}
\end{gathered}
$$

$$
\begin{gathered}
\text { Hodograph (2) } \\
d \delta=\frac{d v}{v} \sqrt{M^{2}-1} \quad M^{2}=\frac{2 M^{* 2}}{\gamma+1-(\gamma-1) M^{* 2}} \\
d \delta=\frac{d M^{*}}{M^{*}} \sqrt{\frac{M^{* 2}-1}{1-\frac{\gamma-1}{\gamma+1} M^{* 2}}}
\end{gathered}
$$

The integral of $d \delta$ leads to the formula of an epicycloid.

Hodograph (3)

δ and M_{1} are given.

- What is the resulting M_{2} ?
- What is the wave direction? \qquad
The physical plane:

The hodograph plane:

Problem \#6.7

Please, solve graphically the double reflection problem \qquad below. $M_{1}=1.28, \delta=5^{\circ}$.

Determine M_{2}, M_{3} and the wave directions! \qquad

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Problem \#6.8

What is the Mach number in absolute reference frame on the upstream and downstream side of the contact discontinuity, if the initial shock tube temperature is
300 K and the initial pressure ratio is 100? (The shock tube operates with dry air.)
\qquad
\qquad
\qquad
\qquad

