2. Irrotational flows

Dr. Gergely Kristóf Department of Fluid Mechanics, BME February, 2009.

Irrotational flows

Shape of the streamlines? Pressure and velocity distributions?

Most analytic solutions have been developed for irrotational flows. Lamb, H: Hydrodynamics, 1932. (First edition: 1879.)

Flows originated from a volume containing fluid at rest is an irrotational flow until the vorticity generated by walls penetrates the flow field.

"The irrotational motion of a liquid occupying a simply-connected region has less kinetic energy than any other motion consistent with the same normal motion of the boundary." (W.Thomson, 1849)

If the velocity field is rotation free: $\nabla \times \vec{v} = 0$

we can define velocity-potential function $\boldsymbol{\phi}$ as: $\vec{v}=\nabla\phi$

(This holds for compressible flows as well.)

Calculation of the pressure field

Pressure distribution in ideal fluid (µ=0, <code>p=const.</code>) can be obtained from the Bernoulli principle:

$$p_2 - p_1 = \frac{\rho}{2} \left(v_1^2 - v_2^2 \right) + \rho g(z_1 - z_2)$$

The equation of motion for Darcy flow:

$$\phi = -k \frac{p + \rho gz}{\mu}$$

In which the density (p), the permeability (k) and the dynamic viscosity (µ) are constant values and the velocity is defined as the surface intensity of the volume flow rate:
$$Q = \int \vec{v} \, d\vec{A}$$

$$p_2 - p_1 = \frac{\mu}{k} (\phi_1 - \phi_2) + \rho g(z_1 - z_2)$$

Velocity potential for constant density fluid flow

Continuity equation:

 $\nabla \cdot \vec{v} = 0$ $\nabla \cdot (\nabla \phi) = \Delta \phi = 0$

 ϕ is an harmonic function (fulfilling the Laplace equation). An important example: velocity potential of a point source:

$$\vec{v} = \frac{Q}{4r^2\pi}\vec{e}_r \longrightarrow \phi = -\frac{Q}{4\pi r} + \text{Const}$$

Superposition principle

The governing equations are linear, therefore we can utilize the superposition principle.

E.g. double source (doublet).

d +Q

$$\phi = -\frac{M}{4\pi} \frac{\cos \vartheta}{r^2}$$

Any irrotational flow can be regarded as a result of a distribution of sources and doublets over the boundary.

The intensity distribution is still a question. We can utilize the boundary element method ...

Potentials			
	Ψ	φ	w
Name	Stream func.	Velocity-pot.	Complex-pot.
Variable density flow	N.A **	applicable	N.A
Rotational flow	applicable	N.A	N.A
3D flow	vector	scalar	N.A
Definition	$\nabla \times \vec{\psi} = \vec{v}$	$\nabla \phi = \vec{v}$	$w = \phi + i\psi$

Flow around a circular cylinder (3)

$$\vec{c}_{r=R} = c_{\infty}(1 - \cos 2\vartheta + i \sin 2\vartheta)$$

$$|c|_{r=R}^{2} = (c\vec{c})_{r=R} = c_{\infty}^{2} [(1 - \cos 2\vartheta)^{2} + \sin^{2} 2\vartheta]$$

$$|c|_{r=R}^{2} = c_{\infty}^{2} [1 - 2\cos 2\vartheta + \underbrace{\cos^{2} 2\vartheta + \sin^{2} 2\vartheta}_{1}]$$

$$|c|_{r=R}^{2} = 2c_{\infty}^{2} [1 - \cos 2\vartheta]$$

$$|c|_{r=R}^{2} = 2c_{\infty}^{2} [\underbrace{\cos^{2} \vartheta + \sin^{2} \vartheta}_{1} - (\cos^{2} \vartheta - \sin^{2} \vartheta)]$$

$$|c|_{r=R}^{2} = 4c_{\infty}^{2} \sin^{2} \vartheta \qquad (c|_{r=R}^{2} = 2c_{\infty}|\sin \vartheta|)$$

