8. Hydraulics

Dr. Gergely Kristóf
Dept. of Fluid Mechanics, BME \qquad
April, 2014.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Passive elements vs. pumps \qquad

We can calculate in
$\underbrace{\frac{p_{1}}{\rho g}+z_{1}+\frac{v_{1}^{2}}{2 g}}_{h_{t, 1}} \underbrace{\frac{p_{2}}{\rho g}+z_{2}+\frac{v_{2}^{2}}{2 g}}_{h_{t, 2}}+\underbrace{\Delta h^{\prime}}_{\Delta h^{\prime}=\frac{\Delta p^{\prime}}{\rho g}}$ \qquad
meter dimensions:
\qquad
\qquad

The hydraulic energy balance

\qquad

Problem \#8.1

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

Network elements

nodes: 1..N
edges: 1..E
loops: 1..L
\qquad
\qquad
\qquad
\qquad
q_{i} represent a supply, when $\mathrm{q}_{\mathrm{i}}>0$, and consumption, when $\mathrm{q}_{\mathrm{i}}<0$
\qquad
$\mathrm{q}_{\mathrm{i}}-\mathrm{s}$ are localized at the nodes.
q_{i} values must fulfill: \qquad

$$
\sum_{i=1}^{N} q_{i}=0
$$

Tree topology

\qquad
Tree topology can always be converted into looped topology:
The nodes representing the external space are of identical pressure and must fulfill the continuity too, thus can be regarded as one single node. \qquad
E.g. the topology of an air extraction network: \qquad

The looped topology is more general than the tree topology.

Node matrix

The unknowns are the x_{j} volume flow rates in each pipe. flow direction meets the edge direction; flow direction is in adverse direction.

Nodal equations:
 (i: 1..N)
$a_{i j}$ are the elements of the topology matrix.
$a_{i j}=1$: if edge j leads out of node i ;
$a_{i j}=-1$: if edge j leads into node i ;
$a_{i j}=0$: if edge j does not meet node i.
\qquad
\qquad
\qquad

Number of equations

We have only $\mathrm{N}-1$ independent nodal equation, because the sum of q_{i} values must be 0 . Eg:

$x_{1}=q_{1}$
How many nodes we have got?

$$
N=1+E-L
$$

We have E unknowns, thus:
$E=\underbrace{N-1}+L$
Number of independent nodal equations

Number of loop equations.
With the loop equations we can close the system.

Loop equations

\qquad
The total pressure loss of edge j reads: $\quad \Delta p^{\prime}{ }_{j}=\frac{\rho}{2} \frac{x_{j}\left|x_{j}\right|}{A_{j}^{2}}\left(\frac{\ell_{j}}{d_{j}} \lambda_{j}+\zeta_{j}\right)$ \qquad

$$
\Delta p_{j}^{\prime}=k_{j} x_{j}\left|x_{j}\right|
$$

The system of loop equations is:

$$
\sum_{j=1}^{E} b_{k j} \Delta p^{\prime}=0 \quad \text { (k: 1..L) }
$$

$$
\sum_{j=1}^{b_{k j}} \Delta p_{j}{ }_{j}=0
$$

$b_{k j}$ are the elements of the loop matrix.
$b_{k j}$ are the elements of the loop matrix.
$b_{k j}=1$: if the direction of edge j meets the direction of loop k ;
$b_{k j}=-1$: if edge j is in adverse direction;
$b_{k j}=0$: if edge j is not contained by loop k .
\qquad
\qquad

Problem \#8.2

a) Specify the loop matrix for the pipe network bellow:

b) Construct the loop equation for loop 1using constant indices $(1,4,5)$ for the unknown volume flow-rates.

The Cross method

\qquad
An easy to implement iterative solution method for looped networks.

1. Set the volume flow rates on the way to fulfill the nodal equations \qquad Eg. we set $x_{i}=0$.
2. Correct the flow rates of all edges within loop k by adjusting their x_{j} values with a q_{k} loop correction flow rate. (Correct only one loop at a \qquad time.)
Apply the loop corrections sequentially on each loop.
Apply the loop corrections sequentially on each loop.
We always spoil the pressure balance of the neighboring loops at some We alway
extents.
\qquad
3. Repeat the corrections in cycles. \qquad
\qquad
\qquad

The loop correction (1) \qquad
The loop equations:

$$
\sum_{j=1}^{E} b_{k j} Q^{\prime}=0
$$

The corrected flow-rates must fulfill the loop equation. For loop k :

$$
\sum_{j=1}^{E} b_{k j} k_{j}\left(x_{j}+b_{k j} q_{k}\right)\left|x_{j}+b_{k j} q_{k}\right|=0
$$

When calculating \boldsymbol{q}_{k} we can make some approximations:

1. We can assume that the sign of x_{j} is not changed when being corrected:

$$
\sum_{j=1}^{E} b_{k j} k_{j} s_{g}\left(x_{j}\right)\left(x_{j}+b_{k j} q_{k}\right)^{2}=0
$$

2. When q_{k} is small, its square can be neglected:

$$
\sum_{j=1}^{E} b_{k j} k_{j} s g\left(x_{j}\right)\left(x_{j}^{2}+2 x_{j} b_{k j} q_{k}\right)=0
$$

The loop correction (2)

\qquad

$$
\begin{aligned}
& \sum_{j=1}^{E} b_{k j} k_{j} \operatorname{sg}\left(x_{j}\right)\left(x_{j}^{2}+2 x_{j} b_{k j} q_{k}\right)=0 \\
& \sum_{j=1}^{E}\left(b_{k j} k_{j} x_{j}\left|x_{j}\right|+2 b_{k j}^{2} k_{j}\left|x_{j}\right| q_{k}\right)=0
\end{aligned}
$$

q_{k} is a constant value within loop k , therefore:

$$
\begin{array}{ll}
\sum_{j=1}^{\text {loop } k} b_{k j} k_{j} x_{j}\left|x_{j}\right|+q_{k} \sum_{j=1}^{\text {loop } k} 2 b_{k j}^{2} k_{j}\left|x_{j}\right|=0 \\
q_{k}=-\frac{\sum_{j=1}^{\text {loop } k} b_{k j} k_{j} x_{j}\left|x_{j}\right|}{\sum_{j=1}^{\text {loop }} 2 b_{k j}^{2} k_{j}\left|x_{j}\right|} & \begin{array}{l}
\text { Than we correct the } \\
\text { flow-rates: }
\end{array} \\
x_{j}^{n+1}=x_{j}^{n}+b_{k j} q_{k}
\end{array}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Newton-Raphson method with direct solution

Independent loop corrections do not give a convergent solution in complex cases, o we need to solve the linear system directly for the whole flow rate correction ector.
The flow rate of the $j^{\text {th }}$ conduit is updated by taking into account q_{m} values of every loop:

$$
x_{j}^{n+1}=x_{j}^{n}+\sum_{m=1}^{L} b_{m j} q_{m}
$$

With this assumption, the loop-equation for the $\mathrm{k}^{\text {th }}$ loop reeds:

$$
\sum_{j=1}^{E}\left(b_{k j} k_{j} x_{j}^{n}\left|x_{j}^{n}\right|+2 b_{k j} k_{j}\left|x_{j}^{n}\right| \sum_{m=1}^{L} b_{m j} q_{m}\right)=0
$$

This formulates a system of $L(k: 1 . . L)$ equations for the unknown $q_{m}(m: 1 . . L)$ values can be solved by any direct solution method, e.g. by Gauss-Jordan method
Wave propagation in long liquid product pipelines (1)
Due to the pressure jump $d p$,

Continuity:
$(a-d v)(\rho+d \rho)(A+d A)=a \rho A \quad a \rho d A+a d \rho A-d v \rho A=0$
Momentum theorem:

$$
\begin{aligned}
& \text { A } \rho a(a-(a-d v))=(A+d A)(p+d p)-A p-\underbrace{p_{\text {wall }} d A}_{R} \\
& \text { ressure force acting on the pipe wall. }
\end{aligned}
$$

$p_{\text {wall }} \approx p$ thus the Allievi theorem holds: $\quad \rho a d v=d p$
\qquad
\qquad
\qquad

Wave propagation in long liquid product pipelines (2)

$$
\begin{aligned}
& a \rho d A+a d \rho A-d v \rho A=0 \rightarrow \frac{d v}{a}=\frac{d A}{A}+\frac{d \rho}{\rho} \\
& \rho a d v=d p \quad \rightarrow \frac{d v}{a}=\frac{d p}{\rho a^{2}} \\
& \frac{d p}{\rho a^{2}}=\frac{d A}{A}+\frac{d \rho}{\rho} \\
& a^{2}=\frac{1}{\frac{\rho}{A} \frac{d A}{d p}+\frac{d \rho}{d p}}
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Wave propagation in long liquid product pipelines (3) \qquad
\qquad
\qquad
\qquad

$\frac{\rho}{A} \frac{d A}{d p}=\frac{\rho}{E_{w}} \frac{D}{s}$	$\frac{d \rho}{d p}=\frac{\rho}{E_{\ell}}$

Note that, also the bubbly gas content can cause significant reduction to $\mathrm{E}_{\mathfrak{r}}$.

Problem \#8.3

A) Compare the wave celerity in still water with those in a pipeline of given geometrical parameters:

Pipe diameter: 500 mm ,
Wall thickness: 10 mm ,
$\mathrm{E}_{\text {water }}: 2.0 \times 10^{9} \mathrm{~Pa}$
$\mathrm{E}_{\text {stata }}: 2.1 \times 10^{11} \mathrm{~Pa}$
B) For which value of s / D ratio is the difference in sound speeds equal to 5% of the sound speed in clear water?

Unsteady flow in liquid product pipelines

Continuity equation for constant nominal cross-section pipes:

$$
\frac{\partial \rho}{\partial t}+\frac{\partial}{\partial x}(\rho v)=0
$$

The equation of motion is water-hummer equation:

$$
\frac{\partial v}{\partial t}+v \frac{\partial v}{\partial x}=-\frac{1}{\rho} \frac{\partial p}{\partial x}+f
$$

f denotes the force on unit mass of fluid due to wall friction:

$$
f=\frac{1}{\rho} \frac{\Delta p^{\prime}}{\Delta x}
$$

for turbulent flow, we can state:

$$
\Delta p^{\prime}=-\frac{\rho}{2} v|v| \frac{\Delta x}{D} \lambda \quad \text {, thus } \quad f=-\frac{\lambda}{2 D} v|v|
$$

Pipe friction coefficient for unsteady flows

For periodical flows of sinusoidal time dependence λ can be specified as a function of Re and $S t=f D / v$.
When the pressure gradient changes direction:

Unsteady λ values are usually greater than the steady values due to the continuous refreshment of the boundary layer.
For laminar flow even an analytical solution can be found in the literature
For turbulent flows λ can be identified on the basis of resonance experiments carried out in closed pipes. According to our own measurements, λ fell in the range of 0.02-0.04 (for some experiments in the ranges of Re:104-10 ${ }^{5}$ and St:0.005-0.02). \qquad

PDE for $\mathrm{p}(\mathrm{t}, \mathrm{x})$ and $\mathrm{v}(\mathrm{t}, \mathrm{x})$ \qquad

$$
\left.\begin{array}{c}
a^{2}=\left.\frac{\partial p}{\partial \rho}\right|_{s=\text { const. }} \\
\frac{\partial \rho}{\partial t}+v \frac{\partial \rho}{\partial x}+\rho \frac{\partial v}{\partial x}=0 \\
\underbrace{\frac{1}{a^{2}} \frac{\partial p}{\partial \rho}}_{1} \frac{\partial \rho}{\partial t}+\frac{v}{a^{2}} \frac{\partial p}{\partial \rho} \frac{\partial \rho}{\partial x}+\rho \frac{\partial v}{\partial x}=0 \\
\frac{\partial p}{\partial t}+v \frac{\partial p}{\partial x}+\rho a^{2} \frac{\partial v}{\partial x}=0 \\
\rho a \frac{\partial v}{\tau}+\rho a v \frac{\partial v}{\tau}=-a \frac{\partial p}{\tau}+\rho a f
\end{array}\right\} \begin{aligned}
& \text { Now, every } \\
& \text { term is in } \\
& \text { Pa/s. }
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Acoustical assumptions

\qquad

$$
\begin{gathered}
\frac{\partial p}{\partial t}+\frac{\partial p}{\partial x}+\rho a^{2} \frac{\partial v}{\partial x}=0 \\
\rho a \frac{\partial v}{\partial t}+\rho a v \frac{\partial v}{\partial x}=-a \frac{\partial p}{\partial x}+\rho a f
\end{gathered}
$$

1) we assume: $\rho \cong \rho_{0} \quad$ and $\quad a \cong a_{0}$

$$
\frac{\partial p}{\partial t}+v \frac{\partial p}{\partial x}+a_{0} \frac{\partial \rho_{0} a_{0} v}{\partial x}=0
$$

$$
\frac{\partial \rho_{0} a_{0} v}{\partial t}+v \frac{\partial \rho_{0} g \not v v}{\partial x}=-a_{0} \frac{\partial p}{\partial x}+\rho_{0} a_{0} f
$$

2) we assume:

$$
v \ll a_{0}
$$

\qquad
Since $\rho_{0} a_{0} v$ must be of the same order of magnitude as p.

Characteristic variables

$$
\begin{aligned}
& \frac{\partial p}{\partial t}+a_{0} \frac{\partial \rho_{0} a_{0} v}{\partial x}=0 \\
& \frac{\partial \rho_{0} a_{0} v}{\partial t}+a_{0} \frac{\partial p}{\partial x}=\rho_{0} a_{0} f=-\underbrace{\frac{\lambda}{2 D} \rho_{0} a_{0} v|v|}
\end{aligned}
$$

(M)
\qquad
(C+M) $\quad \frac{\partial}{\partial t}\left(p+\rho_{0} a_{0} v\right)+a_{0} \frac{\partial}{\partial x}\left(p+\rho_{0} a_{0} v\right)=-\zeta v|v|$ \qquad
$\frac{\partial \alpha}{\partial t}+a_{0} \frac{\partial \alpha}{\partial x}=-\zeta v|v| \quad$ in which $\quad \alpha=p+\rho_{0} a_{0} v$ \qquad
(C-M) $\quad \frac{\partial}{\partial t}\left(p-\rho_{0} a_{0} v\right)-a_{0} \frac{\partial}{\partial x}\left(p-\rho_{0} a_{0} v\right)=\zeta v|v|$ \qquad
$\frac{\partial \beta}{\partial t}-a_{0} \frac{\partial \beta}{\partial x}=\zeta v|v| \quad$ in which $\quad \beta=p-\rho_{0} a_{0} v$ \qquad

Characteristic directions

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Boundary conditions

$$
\begin{gathered}
\text { Dead end: } v=\frac{\alpha-\beta}{2 \rho_{0} a_{0}}=0 \rightarrow \alpha=\beta \\
\underbrace{}_{\text {Outlow: }} p_{0}=\frac{\alpha+\beta}{2} \rightarrow \alpha=2 p_{0}-\beta \\
\text { Inflow: } p+\frac{\rho_{0}}{2} v^{2}=p_{0} \\
\end{gathered}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Problem \#8.4

We suddenly open one end of an evacuated pipe.
What will be the pressure and inflow velocity immediately after the opening? Please, use the method of characteristics and calculate α, β quantities. Define the initial state of the pipe on the basis of $\mathrm{v}=0, \mathrm{p}=$ const. conditions

Pressure in the closed pipe
External pressure:
Air density:
50 kPa ,
$1.2 \mathrm{~kg} / \mathrm{m}^{3}$
$334 \mathrm{~m} / \mathrm{s}$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Ethylene polymerization

\qquad
Operating pressure ~ 2700 bar.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Boundary conditions: the compressor \qquad
Compressor discharge (Velocity at the pipe inlet)
\qquad
\qquad [m/s]

\qquad
\qquad
\qquad
Phase angles of the linear $\left(\Delta \phi_{1}\right)$ and the sinusoidal $\left(\Delta \phi_{2}\right)$ parts are set on the basis of geometrical assumptions.
The phase angle was obtained from the vibration signal caused by the valve opening. \qquad

Boundary conditions: the reactor

Reactor	
Pipe :	Intensive dissipation due to the polymerization process.
:.: :.: :.: $\alpha(t) \beta(t)=\beta$	Treated as a non-reflective BC
-	

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

