6. Gas dynamics

Dr. Gergely Kristóf Dept. of Fluid Mechanics, BME February, 2009.

Speed of infinitesimal disturbances in				
still gas				
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
_	dv	a-dv	а	
	$\rho + d\rho \xrightarrow{a}$	$\rho + d\rho$		
	$ \begin{array}{ccc} \rho + d\rho & \longrightarrow \\ p + dp & \rho, p \end{array} $	p+ap p+dp	ρ , p	
777777		7777777	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Continuity:		,	·	
/\ =			~ a	
$A(a-dv)(\rho+d\rho)=a\rho A$			→	
$a d\rho = \rho dv$			\circ	
Momentum		dn		
theorem: $\sum \vec{I} = \sum \vec{P}$ $a^2 = \frac{dp}{dr}$				
$A \rho a(a - (a - dv)) = A dp$				
Apala		/	5000 /	
$q_{_m}$	$\frac{dv}{dp = 0}$	In steal	~5000 m/s	
	$dp = \rho a dv$	In water	~1500 m/s	
Allievi theore	em——	In air	~340 m/s	

Ideal gases

Equation of state:

$$\frac{p}{\rho} = RT$$

We also assume that the specific heats are constant.

Internal energy: $u = c_v T$

$$u = c_v T$$

Enthalpy:
$$h = u + \frac{p}{\rho} = c_p T$$

Specific gas constant:
$$R = c_p - c_v = \frac{R_u}{M}$$
; $R_{air} = \frac{8314}{29} = 287 \left[\frac{J}{kg \, K} \right]$

Ratio of specific heats: $\gamma = \frac{c_p}{c_v}$ eg. for all diatomic gases:

$$\gamma = 1.4$$

The speed of sound in ideal gases

We assume isentropic compression, which is very fast and the effect of the friction is negligible, thus:

$$\frac{p}{\rho^{\gamma}}$$
 = const.

 $ln p - \gamma ln \rho = ln(const.)$

$$\frac{dp}{p} - \gamma \frac{d\rho}{\rho} = 0$$

$$\frac{dp}{d\rho} = \gamma \frac{p}{\rho} = \gamma RT$$

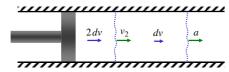
Eg. for air:

$$a = \sqrt{\gamma RT}$$

at 0 °C: a=331 m/s at 20 °C: a=343 m/s

Nonlinear wave propagation

What if we generate another small disturbance?



 $v_2 > a$ because:

- \int The second wave propagates in a gas flow of dv velocity.
- $\left\{ \begin{array}{ll} \text{- The second wave propagates in a gas flow having a higher speed of sound: } p\uparrow \to T\uparrow \to a\uparrow. \end{array} \right.$

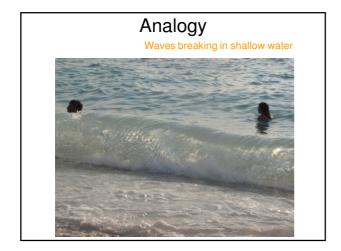
The second wave will catch up to the first wave.

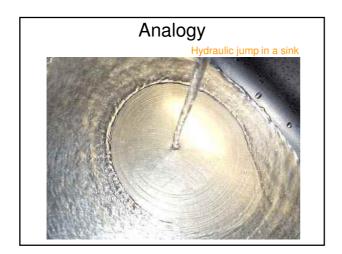
Shock waves

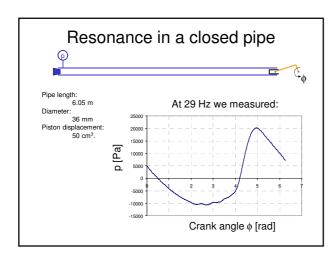
A compression wave is steepening, and finally it becomes a **shock wave**:

Expansion waves behave in the opposite way:

- Treated as a discontinuity (finite jump) of the state variables (p, ρ, T and a).
- Propagates faster than the small disturbances. (Only shock waves can do so.)
- Deceleration of supersonic flows are generally caused by shock waves
- It is a dissipative process. (Causes head losses.)

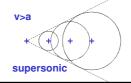






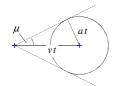
Propagation of small disturbances in subsonic and in supersonic flow

Positions of an object having velocity v at time instants 0,-1,-2 and -3 seconds and also showing the wave fronts started in those instants:



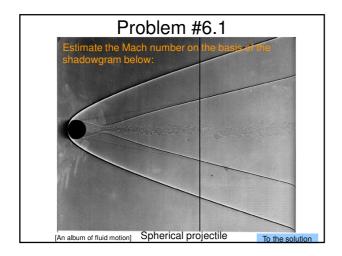
Application

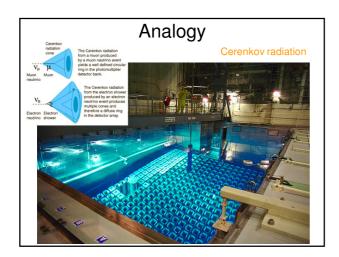
Mach cone

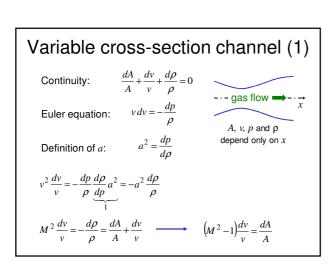


Mach number: $M = \frac{v}{m}$

Mach angle: $\mu = \arcsin\left(\frac{a}{v}\right) = \arcsin\left(\frac{1}{M}\right)$





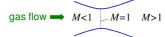


Variable cross-section channel (2)

$$\left(M^2 - 1\right)\frac{dv}{v} = \frac{dA}{A}$$

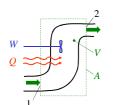
	Acceleration	Deceleration
Subsonic M<1	Convergent	Divergent
Supersonic M>1	Divergent	Convergent

If M=1 then dA=0: the area has an extreme value (minimum).



Energy equation (1)

$$\frac{\partial}{\partial t}\int\limits_V (u+\frac{v^2}{2})\rho\,dV + \oint\limits_A (u+\frac{v^2}{2})\rho\,\vec{v}\,d\vec{A} = Q + W - \oint\limits_A p\,\vec{v}\,d\vec{A}$$



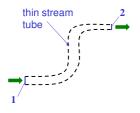
For steady state:

$$\oint_A (h + \frac{v^2}{2})\rho \vec{v} d\vec{A} = Q + W$$

Denoting the mass weighted average of the stagnation (total) enthalpy in cross-sections 1 and 2 by $h_{t,l}$ and $h_{t,2}$, it reads:

$$(h_{t,2} - h_{t,1})q_m = Q + W$$

Energy equation (2)



The stream tube can be regarded as a moving wall.

We apply the energy equation for steady flow under the following assumptions:

-the stream tube is thermally isolated (Q=0);

-the shear stress is 0 over the stream tube (W=0).

We obtain:

 $h_{t,2} = h_{t,1}$

Isentropic flow (1)

I. law of thermodynamics: $T ds = du + p d(\rho^{-1})$

for an ideal gas: $T ds = c_v dT - \frac{p}{\rho^2} d\rho = c_v dT - RT \frac{d\rho}{\rho}$

for isentropic flow: $c_{v} \frac{dT}{T} = R \frac{d\rho}{\rho}$

$$\frac{R}{c_v} = \frac{c_p - c_v}{c_v} = \gamma - 1$$

$$\frac{T_2}{T_1} = \left(\frac{\rho_2}{\rho_1}\right)^{\gamma - 1} \quad \longleftarrow \quad \frac{dT}{T} = (\gamma - 1)\frac{d\rho}{\rho}$$

Isentropic flow (2)

$$\frac{dT}{T} = (\gamma - 1)\frac{d\rho}{\rho}$$

$$\frac{dp}{p} = \frac{d\rho}{\rho} + \frac{dT}{T}$$

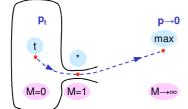
$$\frac{dT}{T} = \left(\gamma - 1\right) \left[\frac{dp}{p} - \frac{dT}{T}\right]$$

$$\gamma \frac{dT}{T} = (\gamma - 1) \frac{dp}{p}$$

$$\frac{T_2}{T_1} = \left(\frac{p_2}{p_1}\right)^{\frac{\gamma - 1}{\gamma}}$$

Isentropic flow (3)

Reference states



7

Isentropic flow (4)

By applying the energy equation to a stream line we obtain:

$$h_t = h + \frac{v^2}{2} = \text{constant}$$

(It is in analogy with the Bernoulli principle.)

Relations between the reference quantities:

$$M = 0 \qquad M = 1 \qquad M = \infty$$

$$\downarrow \qquad \qquad \downarrow$$

$$h_t = h_* + \frac{v_*^2}{2} = \frac{v_{max}^2}{2}$$

$$v_* = a_*$$

Isentropic flow (5)

We can express temperature T as a function of M:

$$h_t = h + \frac{v^2}{2}$$

$$c_p T_t = c_p T + \frac{v^2}{2}$$

$$a^2 = \gamma R T = \gamma c_p \left(1 - \frac{1}{\gamma}\right) T = (\gamma - 1) c_p T$$

$$\frac{a_t^2}{\gamma - 1} = \frac{a^2}{\gamma - 1} + \frac{v^2}{2}$$

$$\frac{a_t^2}{a_t^2} = \frac{T_t}{T} = 1 + \frac{\gamma - 1}{2} M^2$$

Isentropic flow (6)

Local pressure and density can be expressed in terms of the Mach number through the isentropic relations:

$$\frac{p_t}{p} = \left(\frac{T_t}{T}\right)^{\frac{\gamma}{\gamma - 1}} = \left(1 + \frac{\gamma - 1}{2}M^2\right)^{\frac{\gamma}{\gamma - 1}}$$
$$\frac{\rho_t}{\rho} = \left(\frac{T_t}{T}\right)^{\frac{1}{\gamma - 1}} = \left(1 + \frac{\gamma - 1}{2}M^2\right)^{\frac{1}{\gamma - 1}}$$

The critical ratios (for the state of M=1):

$$\frac{T_*}{T_t} = \frac{2}{\gamma + 1} \qquad \frac{p_*}{p_t} = \left(\frac{2}{\gamma + 1}\right)^{\frac{\gamma}{\gamma - 1}} \qquad \frac{\rho_*}{\rho_t} = \left(\frac{2}{\gamma + 1}\right)^{\frac{1}{\gamma - 1}}$$

For γ=1.4:

0.83

0.53

0.63

Problem #6.2

Please, calculate the maximum velocity for isentropic flow if γ =1.4, R=287 J/kg-K and T_t =1000 K are given!

To the solution

Isentropic flow (8)

Mass flow-rate: $q_m = \rho v A = \frac{\rho}{\rho_t} \rho_t M \frac{a}{a_t} a_t A$

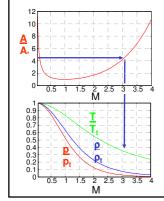
$$q_m = M \left(1 + \frac{\gamma - 1}{2} M^2 \right)^{-\left(\frac{1}{\gamma - 1} + \frac{1}{2}\right)} \rho_t a_t A$$

$$\frac{1}{\gamma - 1} + \frac{1}{2} = \frac{2 + \gamma - 1}{2(\gamma - 1)} = \frac{1}{2} \frac{\gamma + 1}{\gamma - 1}$$

$$q_{m} = M \left(1 + \frac{\gamma - 1}{2} M^{2} \right)^{\frac{-1}{2} \frac{\gamma - 1}{\gamma - 1}} \rho_{t} a_{t} A$$

$$q_{m} = \left(1 + \frac{\gamma - 1}{2} \right)^{\frac{1}{2} \frac{\gamma + 1}{\gamma - 1}} \rho_{t} a_{t} A_{*} \longrightarrow \frac{A}{A_{*}} = f(M)$$

Isentropic flow (9)



$$\frac{A}{A_*} = \frac{M^{-1} \left(1 + \frac{\gamma - 1}{2} M^2\right)^{\frac{1}{2} \frac{\gamma + 1}{\gamma - 1}}}{\left(1 + \frac{\gamma - 1}{2}\right)^{\frac{1}{2} \frac{\gamma + 1}{\gamma - 1}}}$$

The inverse of the above function also gives the Mach number for a given A/A.

Problem #6.3

a) What is the optimum A_{out}/A . ratio of the nozzle of a rocket thruster designed for near ground flight, if the chamber pressure p_i =10 bar_A, and γ =1.3. Please, use the gas tables!

b) Calculate the mass flow-rate for $T_t \! = \! 1300$ K a, R=462 J/kg-K and $A_{out} \! = \! 20$ cm²!

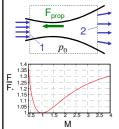
c) Please, calculate the thrust!

To the solution

Thrust function

The momentum theorem for a variable cross-section steady channel flow reads:

$$F_{prop} = (p_2 + \rho_2 v_2^2) A_2 - (p_1 + \rho_1 v_1^2) A_1 + p_0 (A_1 - A_2)$$



$$F = \left(p + \rho v^2\right) A$$

$$\frac{F}{F_*} = \frac{p + \rho v^2}{p_* + \rho_* v_*^2} \frac{A}{A_*} = \frac{p}{p_*} \frac{1 + \gamma M^2}{1 + \gamma} \frac{A}{A_*}$$

known functions of M. E.g: $\frac{p}{\sqrt{p}} = \left(\frac{\gamma+1}{2}\right)^{\frac{\gamma}{\gamma-1}} / \left(1 + \frac{\gamma-1}{2}M^2\right)^{\frac{\gamma}{\gamma-1}}$

Normal shock waves (1)

 $\begin{array}{c|c} v_2 & & v_1 \\ & \downarrow & & \downarrow \\ p_2, \rho_2, T_2 & & & p_1, \rho_1, T_1 \end{array}$

4 unknowns. p_2, ρ_2, T_2 p_1, ρ_1, T_1 We can eliminate one by using:

A steady flow is observed!

Continuity:

$$v_1 \rho_1 A = v_2 \rho_2 A$$

Momentum low:

$$(p_1 + \rho_1 v_1^2)A = (p_2 + \rho_2 v_2^2)A$$

Energy equation: $\left(c_p T_1 + \frac{v_1^2}{2}\right) \rho_1$

$$\left(c_{p}T_{1} + \frac{v_{1}^{2}}{2}\right)\rho_{1}v_{1}A = \left(c_{p}T_{2} + \frac{v_{2}^{2}}{2}\right)\rho_{2}v_{2}A$$

Normal shock waves (2)

Mach number was the key to isentropic flows we should try to solve this problem for $M_2(M_1)$.

$$\rho_1 v_1 = \dots \qquad \qquad \frac{p_1}{RT_1} M_1 (\gamma RT_1)^{1/2} =$$

$$p_1 + \rho_1 v_1^2 = \dots \longrightarrow p_1 \left(1 + \frac{\rho_1 v_1^2}{p_1} \right) = \dots \longrightarrow p_1 \left(1 + \gamma \frac{v_1^2}{a_1^2} \right) = \dots$$

$$p_1(1+\gamma M_1^2)=...$$

$$c_p T_1 + \frac{v_1^2}{2} = \dots \longrightarrow T_1 \left(1 + \frac{\gamma R v_1^2}{2 c_p a_1^2} \right) = \dots \longrightarrow T_1 \left(1 + \frac{\gamma - 1}{2} M_1^2 \right) = \dots$$

Normal shock waves (3)

(a) (b) (c)
$$\frac{p_1}{RT_1}M_1(\gamma RT_1)^{1/2} = \dots \qquad p_1(1+\gamma M_1^2) = \dots \qquad T_1(1+\frac{\gamma-1}{2}M_1^2) = \dots$$

$$\mathbf{a}^{*}\mathbf{b}^{-1*}\mathbf{c}^{0.5} \qquad \frac{M_{1}}{1+\gamma M_{1}^{2}} \sqrt{1+\frac{\gamma-1}{2}M_{1}^{2}} = \frac{M_{2}}{1+\gamma M_{2}^{2}} \sqrt{1+\frac{\gamma-1}{2}M_{2}^{2}}$$

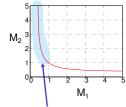
$$M_1^2 \left(1 + \frac{\gamma - 1}{2} M_1^2\right) \left(1 + \gamma M_2^2\right)^2 = M_2^2 \left(1 + \frac{\gamma - 1}{2} M_2^2\right) \left(1 + \gamma M_1^2\right)^2$$

It is a quadratic formula for M_2^2

We can arrange it into the polynomial form:

$$M_2^4(...)+M_2^2(...)+(...)=0$$

Normal shock waves (4)



$$M_2^2 = \frac{M_1^2 + \frac{2}{\gamma - 1}}{\frac{2\gamma}{\gamma - 1}M_1^2 - 1}$$

This branch belongs to an expansion shock. Is it valid?

Normal shock waves (5)

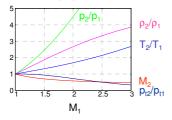
Pressure ratio: **(b)**
$$\longrightarrow \frac{p_2}{p_1} = \frac{1 + \gamma M_1^2}{1 + \gamma M_2^2} = f(M_1)$$

Temperature ratio: (c)
$$\longrightarrow \frac{T_2}{T_1} = \frac{1 + \frac{\gamma - 1}{2} M_1^2}{1 + \frac{\gamma - 1}{2} M_2^2} = g(M_1)$$

$$\frac{\rho_2}{\rho_1} = \frac{p_2}{p_1} \left(\frac{T_2}{T_1} \right)^{-1} = h(M_1)$$

Normal shock waves (6)

$$\frac{p_{t2}}{p_{t1}} = \frac{\frac{p_{t2}}{p_2}}{\frac{p_{t1}}{p_1}} \frac{p_2}{p_1} = \frac{\left(\frac{y_{t2}}{T_2}\right)^{\frac{\gamma}{\gamma-1}}}{\left(\frac{y_{t1}}{T_1}\right)^{\frac{\gamma}{\gamma-1}}} \frac{p_2}{p_1} = \left(\frac{T_1}{T_2}\right)^{\frac{\gamma}{\gamma-1}} \frac{p_2}{p_1}$$



The entropy production

The entropy change can be related to pressure and temperature ratios:

Tas =
$$dh - \frac{dp}{\rho} = c_p dT - RT \frac{dp}{p}$$

$$\frac{ds}{R} = \frac{\gamma}{\gamma - 1} \frac{dT}{T} - \frac{dp}{p}$$

$$\frac{s_2 - s_1}{R} = \frac{\gamma}{\gamma - 1} \ln \frac{T_2}{T_1} - \ln \frac{p_2}{p_1}$$

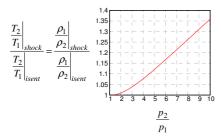
Generally we can state:

$$e^{\frac{s_2-s_1}{R}} = \left(\frac{T_2}{T_1}\right)^{\frac{\gamma}{\gamma-1}} \frac{p_1}{p_2} \longrightarrow e^{\frac{s_2-s_1}{R}} = \frac{p_{t1}}{p_{t2}}$$

An expansion shock wave would lead to a decrease of entropy, therefore it does not exist.

Rankine-Hugoniot relations

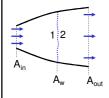
Change of the thermodynamical state



Weak shocks are almost isentropic.

... but they still propagate much faster than a.

Problem #6.4



There is a strong stationary normal shock in a divergent channel at the cross-section characterized by $A_{\rm w}$ -

$$\gamma = 1.4$$

$$M_{in}=2$$

$$p_{in} = 100 \, kPa_A$$

$$T_{in} = 270 \, K$$

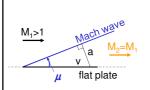
$$A_w / A_{in} = 2$$

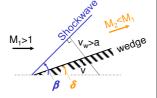
$$A_{out} / A_{in} = 3$$

- a) Calculate the Mach number at the outlet $(M_{out})!$
- b) Please, determine the outlet pressure $(p_{out})!$

To the solution

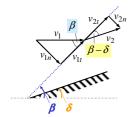
Oblique shockwaves (1)





- Flow direction is changed by δ angle.
- In still medium, shockwaves propagate faster than the speed of sound, therefore: β>μ
- M₂ can be > 1 for an oblique shock.

Oblique shockwaves (2)



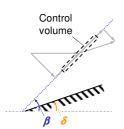
$$v_{1n} = v_1 \sin \beta$$

$$v_{1t} = v_1 \cos \beta$$

$$v_{2n} = v_2 \sin(\beta - \delta)$$

$$v_{2t} = v_2 \cos \left(\beta - \delta\right)$$

Oblique shockwaves (3)



$$\rho_1 v_{1n} = \rho_2 v_{2n}$$

$$\rho_1 v_{1n} (v_{1n} - v_{2n}) = p_2 - p_1$$

$$\rho_1 v_{1n} (v_{1t} - v_{2t}) = 0$$
 \longrightarrow $v_{1t} = v_{2t}$

$$h_1 + \frac{1}{2} \left(v_{1n}^2 + y_{1t}^2 \right) = h_2 + \frac{1}{2} \left(v_{2n}^2 + y_{2t}^2 \right)$$

Same formulae are used for normal shocks!

$$\rho_1 v_{1n} = \rho_2 v_{2n}$$

$$p_1 + \rho_1 v_{1n}^2 = p_2 + \rho_2 v_{2n}^2$$

$$h_1 + \frac{v_{1n}^2}{2} = h_2 + \frac{v_{2n}^2}{2}$$

Oblique shockwaves (4)

We take the normal components of the Mach numbers:

$$M_{1n} = M_1 \sin \beta$$
 $M_{2n} = M_2 \sin (\beta - \delta)$

The static flow quantities can be calculated by using the gas tables developed for normal shocks:

$$M_{2n}^2 = \frac{M_{1n}^2 + \frac{2}{\gamma - 1}}{\frac{2\gamma}{\gamma - 1}M_{1n}^2 - 1}$$

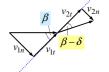
$$\frac{p_2}{p_1} = f(M_{1n})$$
 $\frac{T_2}{T_1} = g(M_{1n})$

$$\frac{T_2}{T} = g(M_{1n})$$

$$\frac{\rho_2}{\rho_1} = h(M_{1n})$$

But the angle β is still unknown!

Oblique shockwaves (5)



$$tg \beta = \frac{v_{1n}}{v_{1t}}$$
 $tg (\beta - \delta) = \frac{v_{2n}}{v_{2t}}$

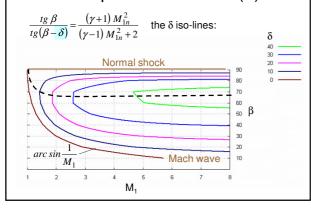
 $v_{1t} = v_{2t}$

density ratio for a normal shock:

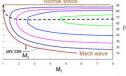
$$\frac{tg\,\beta}{tg\,(\beta-\delta)} = \frac{v_{1n}\,v_{2t}'}{v_{2n}\,v_{1t}'} = \frac{\rho_2}{\rho_1} = \frac{\left(\gamma+1\right)\,M_1^2\,sin^2\,\beta}{\left(\gamma-1\right)\underbrace{M_1^2\,sin^2\,\beta}_{M_{1n}^2} + 2}$$

Now, we can plot β against M_1 for given values of δ .

Oblique shockwaves (6)

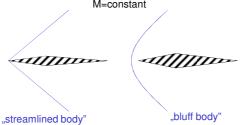


Oblique shockwaves (7)



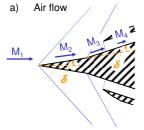
- Above a minimum Mach number M_{min} two β angles exist for a given δ . ($\beta_{strong} > \beta_{weak}$) Only the weak wave can be observed in external flows. (The strong wave can only be produced in wind tunnels.)
- M_{min} depends on δ . Bellow M_{min} , no oblique shock is possible. A detached bow wave is formed.
- We can also define a maximum angle δ_{max} , above which no oblique shockwave can exist for a given Mach number.

Oblique shockwaves (8)



Eg. if we increase the thickness of the wing the bow shock can be detached, the flow goes through a normal shock, therefore a we can expect a much higher pressure close to the leading edge.

Problem #6.5



$$\stackrel{\mathsf{M}_1}{\longrightarrow} \stackrel{\mathsf{M}_2}{\stackrel{\longrightarrow}{\longrightarrow}}$$

$$M_1 = 3$$
 $\delta = 8^{\circ}$
 $M_2 = ?$ $M_3 = ?$ $M_4 = ?$ $\frac{p_{t4}}{p_{t1}} = ?$

$$M_1 = 3$$
 $M_2 = ? \frac{p_{t2}}{p_{t1}} = ?$

To the solution

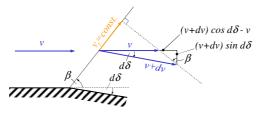
Prandtl-Meyer expansion (1)

Compression + deceleration Expansion + acceleration

Change of flow direction in supersonic flow (at least in isentropic cases) is directly linked to acceleration and deceleration.

We assume an isentropic process; thus we limit the analyses to expansion and to elementary compression cases.

Prandtl-Meyer expansion (2)



$$tg \beta = \frac{(v+dv)\cos d\delta - v}{(v+dv)\sin d\delta}$$

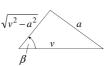
Prandtl-Meyer expansion (3)

$$tg \beta = \frac{(v+dv)\cos d\delta - v}{(v+dv)\sin d\delta}$$

If $d\delta \rightarrow 0$, then $\cos d\delta \rightarrow 1$, and $\sin d\delta \rightarrow d\delta$.

$$tg \beta = \frac{dv}{v \, d\delta}$$

 β is the Mach angle:



$$tg \beta = \frac{a}{\sqrt{v^2 - a^2}} = \frac{1}{\sqrt{M^2 - 1}} = \frac{dv}{v \, d\delta} \qquad d\delta = \frac{dv}{v} \sqrt{M^2 - 1}$$

Prandtl-Meyer expansion (4)

We can express dv/v in terms of the Mach number:

$$\frac{dv}{v} = \frac{dM}{M} + \frac{1}{2} \frac{dT}{T}$$

$$\frac{T_t}{T} = 1 + \frac{\gamma - 1}{2}M^2 \quad \text{in which} \quad T_t = \text{constant}$$
$$-\frac{T_t}{T^2}dT = (\gamma - 1)M \ dM$$

$$\frac{dT}{T} = -\frac{(\gamma - 1)M^2}{1 + \frac{\gamma - 1}{2}M^2} \frac{dM}{M}$$

$$\frac{dv}{v} = \frac{1 + \frac{\gamma - 1}{2}M^2 - \frac{\gamma - 1}{2}M^2}{1 + \frac{\gamma - 1}{2}M^2} \frac{dM}{M} = \frac{1}{1 + \frac{\gamma - 1}{2}M^2} \frac{dM}{M}$$

Prandtl-Meyer expansion (5)

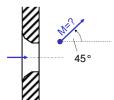
$$d\delta = \frac{dv}{v}\sqrt{M^2 - 1} \qquad \frac{dv}{v} = \frac{1}{1 + \frac{\gamma - 1}{2}M^2}\frac{dM}{M}$$

$$d\delta = \frac{\sqrt{M^2 - 1}}{1 + \frac{\gamma - 1}{2}M^2} \frac{dM}{M} \longrightarrow \delta = \int_{1}^{M} \frac{\sqrt{M^2 - 1}}{1 + \frac{\gamma - 1}{2}M^2} \frac{dM}{M}$$

This integral is the Prandtl-Meyer expansion function:

$$\delta = \sqrt{\frac{\gamma + 1}{\gamma - 1}} atg\left(\sqrt{\frac{\gamma - 1}{\gamma + 1} \left(M^2 - 1\right)}\right) - atg\left(\sqrt{M^2 - 1}\right)$$

Problem #6.6



There is a high speed air flow through a convergent nozzle. Downstream from the nozzle, at a given point, the flow direction is 45° with respect to the axis.

What is the Mach number at this point?

To the solution

Hodograph (1)

Inconveniences:

- 1) the length of the M vector $\rightarrow \infty$ with increasing δ angle
- 2) the length is not proportional to the velocity.

Therefore we will use $M^*=v/a^*$ instead of M=v/a:

$$M^{*2} = \frac{v^2}{a^{*2}} = \frac{v^2}{a^2} \frac{a^2}{a^{*2}} = M^2 \frac{T}{T^*} = M^2 \frac{T}{T_t} \frac{T_t}{T^*}$$

$$M^{*2} = M^{2} \left(1 + \frac{\gamma - 1}{2}M^{2}\right)^{-1} \frac{\gamma + 1}{2}$$

$$M^{*2} = \frac{(\gamma+1)M^2}{2+(\gamma-1)M^2}$$
 and $M^2 = \frac{2M^{*2}}{\gamma+1-(\gamma-1)M^{*2}}$

Hodograph (2)

$$d\delta = \frac{dv}{v} \sqrt{M^2 - 1} \qquad M^2 = \frac{2M^{*2}}{\gamma + 1 - (\gamma - 1)M^{*2}}$$

$$d\delta = \frac{dM^*}{M^*} \sqrt{\frac{M^{*2} - 1}{1 - \frac{\gamma - 1}{\gamma + 1} M^{*2}}}$$

The integral of $d\delta$ leads to the formula of an epicycloid.

Hodograph (3)

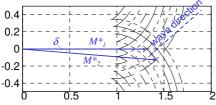
- δ and M_1 are given.

 What is the resulting M_2 ?

 What is the wave direction?

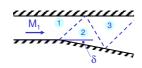
The physical plane:

The hodograph plane:



Problem #6.7

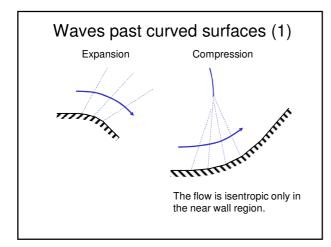
Please, solve graphically the double reflection problem below. $M_1=1.28$, $\delta=5^{\circ}$.

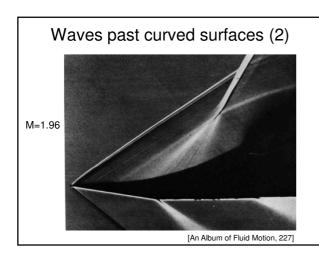


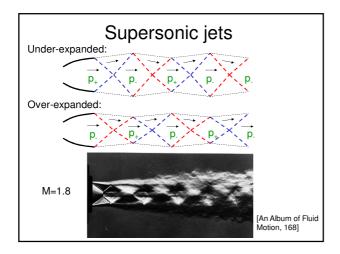
Determine M₂, M₃ and the wave directions!

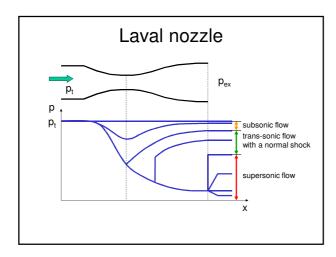
To the solution

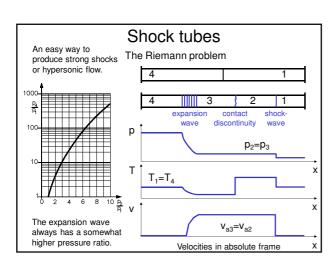
Redirection of a channel flow Fluctuating pressure with increased dissipation. No reflected wave. (Only one expansion wave.)











Problem #6.8	
What is the Mach number in absolute reference frame on the upstream and downstream side of the contact discontinuity, if the initial shock tube temperature is 300 K and the initial pressure ratio is 100? (The shock tube operates with dry air.)	
To the solution	