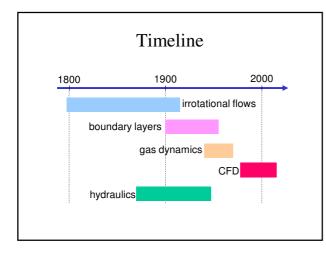
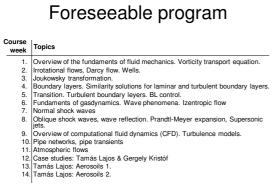
Advanced Fluid Mechanics BME GEÁT MW01

Dr. Gergely Kristóf Department of Fluid Mechanics, BME February 2014.





References

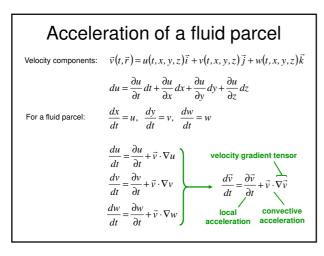
- 1) Lamb H: Hydrodynamics, 1932.
- 2) Schlichting H: Boundary Layer Theory, 1955.
- 3) Shapiro A. H: The Dynamics and Thermodynamics of Compressible Fluid Flow, 1953.
- Streeter V. L, Wylie E. B: Fluid Mechanics, McGraw-Hill, 1975.
- 5) Ferziger J. H, Peric M: Computational Methods for Fluid Dynamics, Springer, ISBN 3-540-42074-6, 2002.

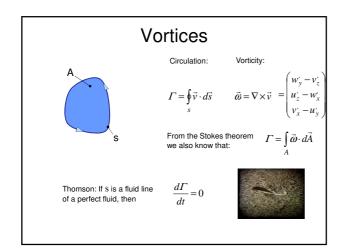
Lecture handouts:

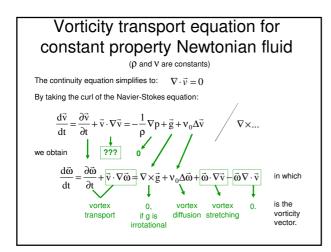
http://www.ara.bme.hu/oktatas/tantargy/NEPTUN/ BMEGEATMW01/2013-2014-II/ea_lecture/

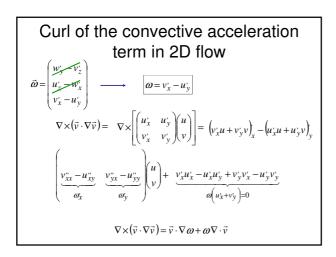
1. Introduction, review of vortical flows

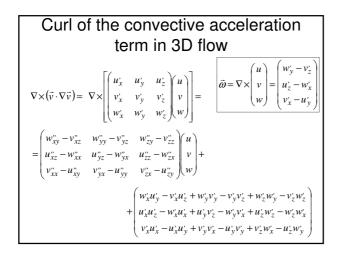
Dr. Gergely Kristóf Dept. of Fluid Mechanics, BME February, 2009.

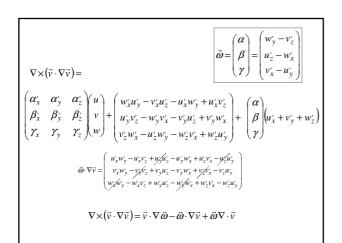


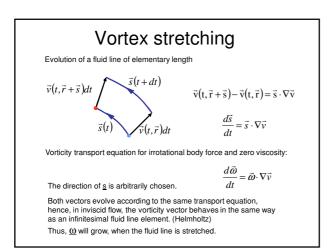


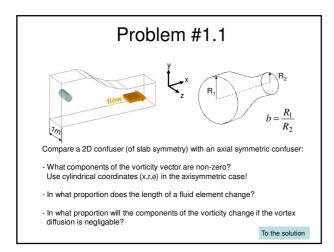












Vortex diffusion

The vorticity transport equation for a 2D flow of a constant property Newtonian fluid:

$$\frac{\mathrm{d}\omega}{\mathrm{d}t} = \frac{\partial\omega}{\partial t} + \vec{v} \cdot \nabla\omega = v_0 \Delta\omega$$

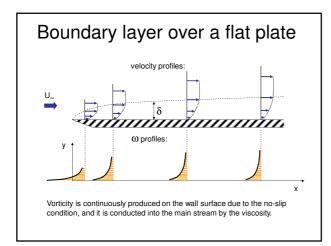
Is in full analogy with the heat transport equation:

$$\frac{dT}{dt} = \frac{\partial T}{\partial t} + \vec{v} \cdot \nabla T = a \Delta T$$

$$a = \frac{\lambda}{\rho c} \left[\frac{m^2}{s} \right]$$
heat diffusion coefficient

 $\nu_0 = \frac{\mu}{\rho} \left[\frac{m^2}{s} \right]$ kinematical viscosity

The kinematical viscosity can be regarded as a vorticity diffusion coefficient. These two phenomena are in full analogy.



$\begin{array}{l} \textbf{Conclusion}\\ \textbf{The vorticity transport equation for incompressible fluids reads:}\\ \hline \frac{d\vec{\omega}}{dt} = \nabla \times \vec{g} + \nu_0 \Delta \vec{\omega} + \vec{\omega} \cdot \nabla \vec{v} \end{array}$

Origin of vorticity: - Boundary conditions (wall shear) - Non conservative forces (eg. Coriolis force)

Redistribution of vorticity: - Vortex stretching - Vortex diffusion

2. Irrotational flows

Dr. Gergely Kristóf Department of Fluid Mechanics, BME February, 2009.

Irrotational flows

Shape of the streamlines? Pressure and velocity distributions?

Most analytic solutions have been developed for irrotational flows. Lamb, H: Hydrodynamics, 1932. (First edition: 1879.)

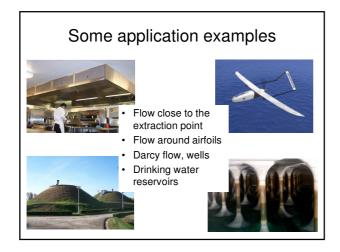
Flows originated from a volume containing fluid at rest is an irrotational flow until the vorticity generated by walls penetrates the flow field.

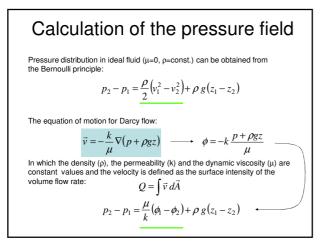
"The irrotational motion of a liquid occupying a simply-connected region has less kinetic energy than any other motion consistent with the same normal motion of the boundary." (W.Thomson, 1849)

If the velocity field is rotation free: $\nabla \times \vec{v} = 0$

we can define velocity-potential function ϕ as: $\vec{v} = \nabla \phi$

(This holds for compressible flows as well.)





Velocity potential for constant density fluid flow

Continuity equation:

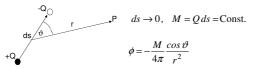
$$\nabla \cdot \vec{v} = 0$$
$$\nabla \cdot (\nabla \phi) = \Delta \phi = 0$$

 ϕ is an harmonic function (fulfilling the Laplace equation). An important example: velocity potential of a point source:

$$\vec{v} = \frac{Q}{4r^2\pi}\vec{e}_r \qquad \longrightarrow \qquad \phi = -\frac{Q}{4\pi r} + \text{Const}$$

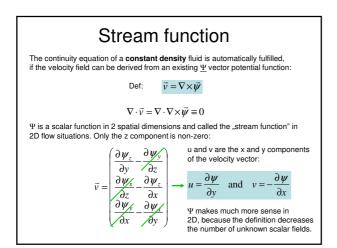
The governing equations are linear, therefore we can utilize the superposition principle.

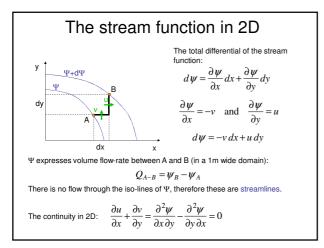
E.g. double source (doublet).



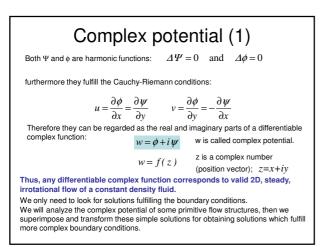
Any irrotational flow can be regarded as a result of a distribution of sources and doublets over the boundary.

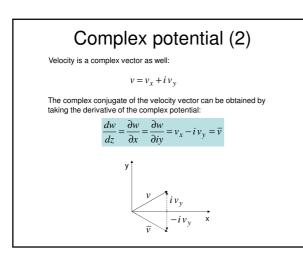
The intensity distribution is still a question. We can utilize the boundary element method ...



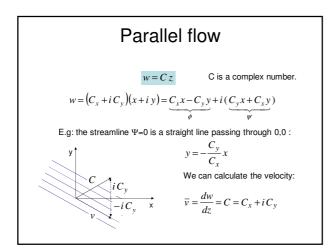


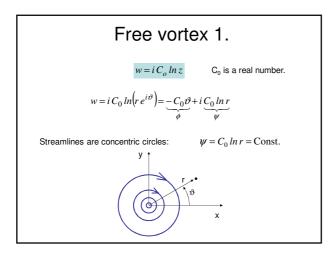
2D irrotational flow of a constant density fluid Let's suppose, that: $\nabla \times \vec{v} \Big|_z = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} = 0$ $\frac{\partial \psi}{\partial x} = -v \text{ and } \frac{\partial \psi}{\partial y} = u$ $\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} = 0$ $\Psi \text{ is also a harmonic function.}$





	Ψ	φ	w
Name	Stream func.	Velocity-pot.	Complex-pot.
Variable density flow	N.A **	applicable	N.A
Rotational flow	applicable	N.A	N.A
3D flow	vector	scalar	N.A
Definition	$\nabla \times \vec{\psi} = \vec{v}$	$\nabla \phi = \vec{v}$	$w = \phi + i\psi$



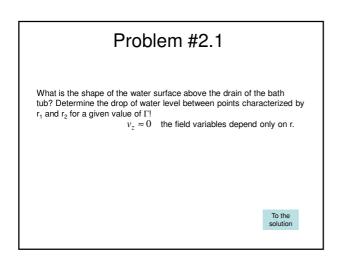


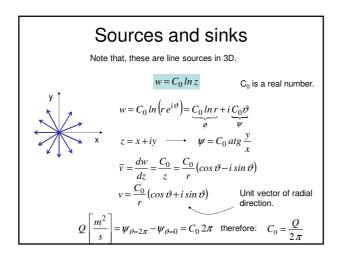
Free vortex 2.
The velocity field

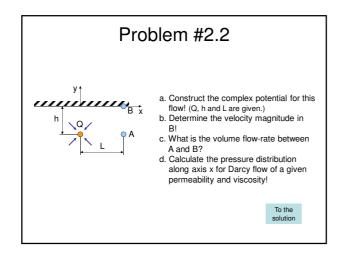
$$\overline{v} = \frac{dw}{dz} = i \frac{C_0}{z} = i \frac{C_0}{r e^{i\vartheta}} = i \frac{C_0}{r} e^{-i\vartheta}$$

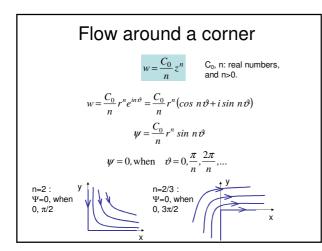
$$\overline{v} = \frac{C_0}{r} i (\cos(-\vartheta) + i \sin(-\vartheta))$$

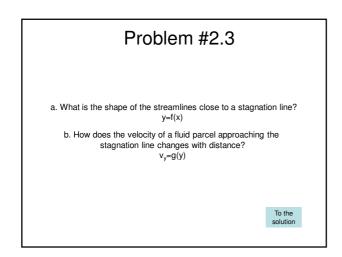
$$v = \frac{C_0}{r} (\sin \vartheta - i \cos \vartheta)$$
Unit vector pointing
in azimuthal direction.
The velocity magnitude: $v_{\vartheta} = \frac{C_0}{r}$
Circulation along any curve which passes around the origo one time:
 $\Gamma = 2r \pi v_{\vartheta} = 2r \pi \frac{C_0}{r} = 2\pi C_0$ thus: $C_0 = \frac{\Gamma}{2\pi}$

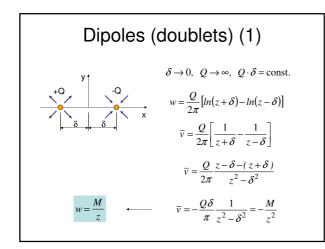


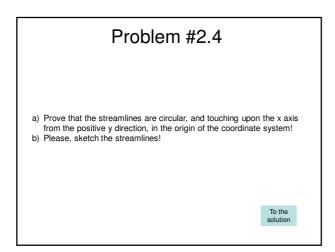


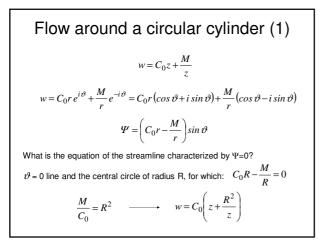


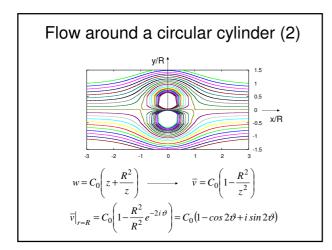


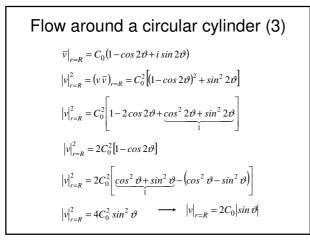


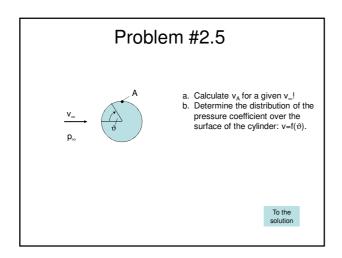


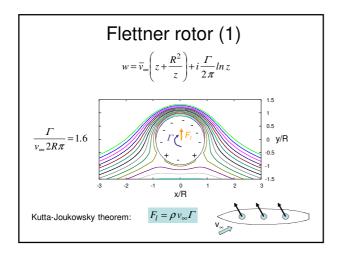


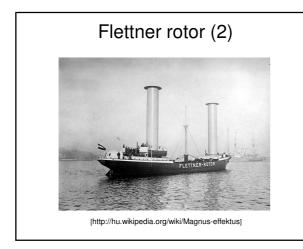


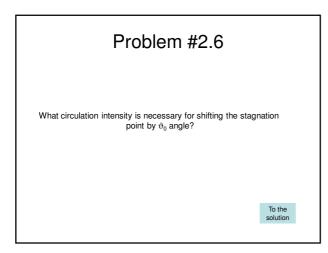


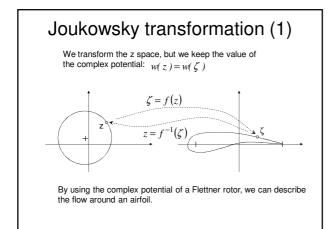


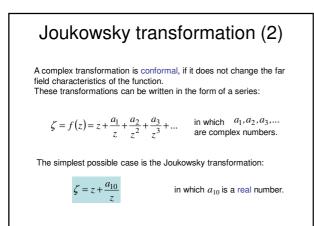


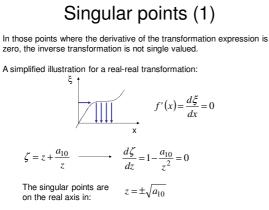




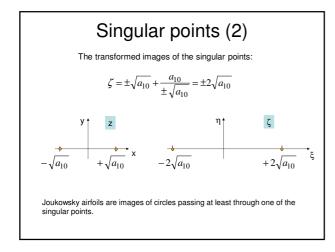


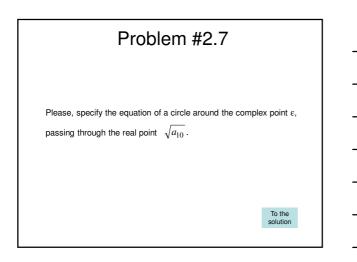


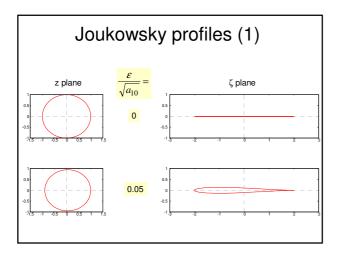


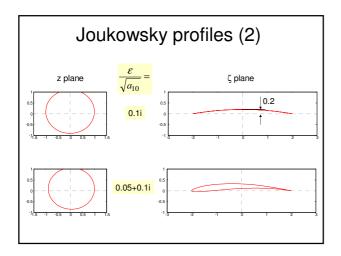


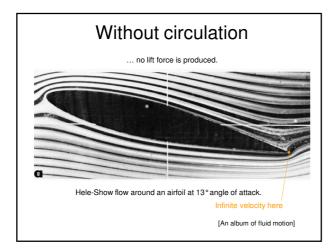
16

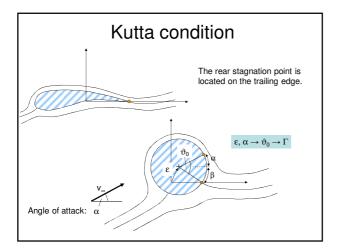


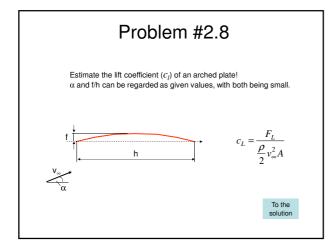


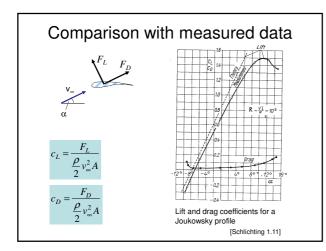


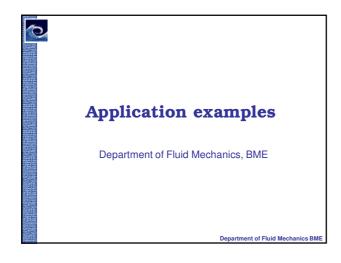


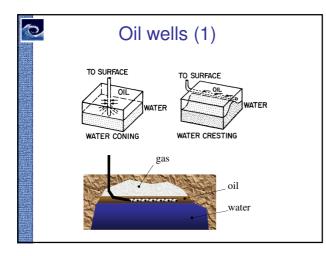


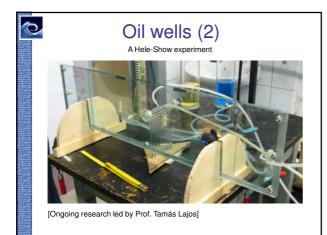


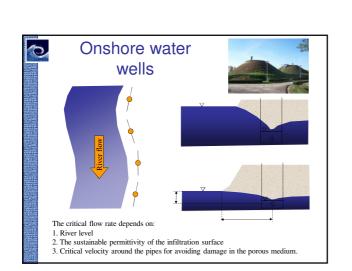












The total amount of water stab produced by the supplier Loar passes through the reservoir.

