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Boundary layer related phenomena

Separation:

-formation of free shear layer,

-strong modification of the 

surface pressure distribution 

(increased head loss),

-production and also reduction 

of the lift force acting on wings.

Turbulence:

-irregular velocity fluctuations

-increased BL thickness

-increased transport coefficient 

(local heat transfer coef. skin 

friction)

-increased resistance against 

separation

Secondary flow:

-by-passing fluid from high to 

low surface pressure zones,

-creation of vorticity parallel to

the main stream

-increased mixing, drift motion 

of sediments and buoyant 

particles

Displacement: Virtually increases the thickness of a plate or an airfoil.

[Schlichting 20.25][Shapiro] [Shapiro]

The boundary layer concept

If the fluid viscosity is very small, then surface friction can effect the flow 

only in the immediate vicinity of the wall, in a layer of δ thickness.
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We can estimate δ assuming a balance between viscous and inertial forces at

the edge of the boundary layer (y=δ). If ν0 is a constant value:
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For laminar boundary layer:  

Two alternative definitions of the
Reynolds number:
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Problem #3.1

Compare the critical value of Reδ (corresponding to 
laminar-turbulent transition) for a flat plate and in a circular 

pipe by assuming:
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Boundary layer equation (1)
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Reference length: Reference velocity:

We estimate the order of magnitude of the dimensionless field variables 
with respect to:

(e.g. the length of the plate)

Problem #3.2

Please, estimate the order of magnitude of each term in the dimensionless 
continuity, and in the dimensionless equation of motion of a steady boundary 

layer flow!

To the solution

Boundary layer equation (2)

From the y component of the eq. of motion we can conclude:
The external pressure penetrates the boundary layer, therefore 
the pressure depends only on the x coordinate. 

The pressure gradient can be related to the bulk flow velocity:
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Boundary layer
equations (BLE) for 

laminar flow.
Field variables:

u(x,y) and v(x,y)

Self-similarity of the laminar 

boundary layer
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Flat plate of 0 inclination

Solved by Blasius (1908).

[Schlichting, 7.8, 7.9]

Due to the self-similarity, 
these profiles are 

independent from Rex.
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The position of the separation point must be independent from the 
Reynolds number. (As long as the external flow is independent 
from Re.)
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Problem #3.3

Please, calculate the displacement velocity v(x,δ)   
(y velocity profile at the edge of the boundary layer)

over a flat plate of zero inclination for given l, Rel and U∞ .

To the solution

Origin of turbulence

1. Natural transition
The initial disturbances are 
generated by the uneven 

surface. Amplification rate 
depends on dp/dx.

2.   Bypass transition

The transition is boosted by the 
turbulence of the main flow.

3.  Separation induces transition
Laminar separation creates an 
inflexion in the u(y) profile which 

is unstable.
4.  Cross-flow transition

Instability caused by a cross 

flow (w velocity component) e.g. 
past swept wings or rotating 
bodies. [White: Viscous Fluid Flow, 1991]

Instability of the laminar boundary layer:
exponential growth of the amplitude of

Tollmien-Schlichting waves.

Effects helping the transition:

Top view:
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The perturbed flow:

The method of small perturbations (1)

u~uu += v~vv += p~pp +=

( ) ( )xp,v,yu 0≈

The flow quantities are decomposed: 

Small perturbations (2D, time dependent): ( ) ( ) ( )t,y,xp~,t,y,xv~,t,y,xu~

The mean flow is a 2D quasi-steady boundary layer flow:
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The mean flow:

Quadratic terms of the perturbation velocity are neglected.

The method of small perturbations (2)
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andBy introducing the stream function Ψ, for which 

The continuity equation is automatically fulfilled.

Furthermore, we can eliminate the pressure by taking the curl of the 

equation of motion. The result would be a forth order PDE for Ψ …

Tollmien-Schlichting waves
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Note that, f(y) is complex, but  physical meaning is only given for the real part.

Problem #3.4

Please, calculate the vorticity of the perturbation 
velocity field for Tollmien-Schlichting waves!

To the solution
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Stability equation (1)

After substitution and elimination of the pressure, we obtain a 4-th order ordinary 

differential equation for f(y):
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Eg. the Blasius profile 

is unstable above a certain

critical Reynolds number.

Point of inflexion
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„Velocity profiles with a point of inflexion are 

unstable.” /Rayleigh – Tollmien theorem/
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[Schlichting 16.9]

… for a neutral (β
i
=0) disturbance in a given mean BL profile at given Reδ*

.

Amplification of the disturbances
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(Flat plate with 0 pressure gradient)
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The pressure gradient is linked with 
the velocity gradient of the external 

flow:

Adverse pressure gradient

Formation of an inflexion point 

on the mean velocity profile

High amplification factor for a 

wide range value of α.
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Problem #3.5
Please, calculate the displacement thickness and the wavelength of highest 
amplification factor for a flat plate of zero inclination at Rex=200000, x=0.1 m.

(This is roughly a speed of 108 km/h in standard atmosphere.)
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To the solution
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Averaging

Turbulent motion is irregular: you will possibly measure N different values at the 

same flow time (time elapsed from the start of the experiment) and spatial 
coordinates if you repeat the experiment N times.

The expected values of the measured quantities are denoted by over-bar and
regarded as mean flow quantities. Eg:
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Mean values in a quasi-steady flow can be approximated by the temporal average 
of a measured signal recorded during a sufficiently long time interval T:
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Effect of turbulence on mean flow: 

Reynolds averaging
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We decompose the instantaneous flow quantities to mean values and turbulent 
fluctuations:

The mean values of all fluctuating quantities are zero and the average values are 
approximately zero as well:
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By taking the average of the Navier-Stokes equation for the instantaneous flow 

field, for incompressible flow we obtain:
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NS equation for the mean flow Reynolds stresses

Must be given in order to close the set of equations 

Prandtl’s mixing length model
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1. ) The fluctuation magnitude caused by a fluid 

parcel which is displaced over a distance l can 

be expressed as:
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in which the mixing length l can be properly 

approximated as a function of mean flow 

characteristics and geometrical parameters.

2. ) All components of the fluctuating velocity are 
approximately the same:

'v'u ≅

turbulent viscosity
(not a constant)

On the basis of the above assumptions we can calculate the components of the 
Reynolds stress tensor. Eg:
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4. Outer layer deceleration
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455.C =

For smooth

plate:

(C is roughness 

dependent.)

Velocity profile

[ANSYS-FLUENT manual]
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Problem #3.6

Determine the turbulent viscosity ratio (νt / ν0) in the logarithmic layer for 
a given value of y+!

To the solution

The effect of the surface roughness

[Schlichting 21.10]
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Skin friction coefficient for a flat plate

Problem #3.7
Determine the maximum magnitude of sand roughness for which a flat plate can be 
regarded as hydraulically smooth. The free stream velocity and the kinematical 
viscosity are given: 125

0 sm1051m/s15 −−
∞ ×== .,U ν

To the solution

Numerical integration of the BLE

l is overestimated by the expression κ y
in the outer layer, therefore 

l must be limited.

Escudier correlation:
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Solution of heat and mass transfer 

problems
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Transport coefficients are calculated 

from νt :
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λ
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Heat diffusivity 

coefficient [m2s-1]:

heat cond. coeff.

specific heat at 
const pressure

When u and v are already 
known we can calculate 

T (temperature) and 
c (concentration) fields.

Performance of airfoils

Avoiding BL 

separation

Requirements

High lift
at low speed

Low drag
at high speed

For low speed 

takeoff and 
landing ability.

For minimum fuel 

consumption.

Delaying BL 

transition
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Methods for delaying the transition
1. Smoothing the surface
2. Low intensity BL suction.

3. Pushing the maximum thickness as close to the trailing edge as possible. 

Boundary layer suction

Total skin friction coef. of a flat plate

[Schlichting: 17.15]
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[Schlichting: 17.9]Curves 1,2 and 3: flat plate x 2.

Methods for avoiding separation

1. Turbulence generation

(passive or active)

2. Intensive BL suction
(active)

3. BL refreshment
(passive or active)


