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Abstract 
  

Wind-induced forces can cause aeroelastic instability or so-called flutter of the long span 

bridges. The response prediction of such structures to wind loading is determined by the 

flutter derivatives. The determination of the flutter derivatives is mainly based on section 

model wind tunnel tests by using two types of experimental methods: free vibration method 

and forced vibration method. In the present work, free vibration test results are used to 

identify the flutter derivatives of a rectangular section with an aspect ratio of 1:8 under 

smooth flow with zero angle of attack. Different system identification methods are 

investigated and the most appropriate and efficient method is chosen to identify the flutter 

derivatives simultaneously out of the noise-corrupted displacement time histories of the 

section model extracted from the free vibration tests. The experimental set-up and the system 

parameters extraction method are described and their influence on the flutter derivatives are 

discussed in detail. The flutter derivatives extracted from the free vibration test results are 

compared with the ones calculated with respect to the forced vibration tests for the same 

rectangular section model. And also another comparison is carried out by calculating the 

critical wind speed with the results of both methods. The validity of the flutter derivatives 

determined from the free vibration test results is verified by the corresponding comparisons.  
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Notation 
 

Ai
* = flutter derivatives for aeroelastic moment 

a0, a1 = coefficients of second order equation (Eqn. 2.23) 
B  = model width 
b  = half model width 
C*  = amplitude of the motion 
Cs  = damping matrix 
C(k) = Theodorsen circulation function  
C  = system damping matrix 

effmech C,C  = mechanical and effective system damping matrices, respectively 
c  = damping coefficient 
cc  = critical damping coefficient 

   chh, chα, cαh, cαα = complex aerodynamic-derivative functions 
Dp = aerodynamic drag force  
d  = half distance between the springs 
F(k) = real part of the Theodorsen circulation function 

        FL (t),F(t) = force vector  
f  = natural cyclic frequency 
G(k) = imaginary part of the Theodorsen circulation function 
G  = modal integral  
g  = overall damping coefficient 
Hi

* = flutter derivatives for aeroelastic lift 
h  = vertical displacement  
I  = mass moment of inertia 
K  = reduced frequency, Bω/U 
k  = reduced frequency, bω/U 
kv  = (wind speed acting on model / tunnel wind speed); U/Ut 
Ks  = stiffness matrix  
Kd = stiffness-damping matrix 
Kh = vertical stiffness 
Kα = torsional stiffness 
Ksp = spring stiffness 
K  = system stiffness matrix 

effmech K,K  = mechanical and effective system stiffness matrices, respectively 
Lh  = aerodynamic lift force  
Ms = mass matrix 
Mα = aerodynamic moment 
m  = mass 
N  = number of data points 
N1, N2

 = time shifts 
Pi

* = flutter derivatives for aeroelastic drag 
P  = eigenvector 
p  = lateral displacement 
Qi  = generalized force in the ith mode 
Re = Reynolds number 
Rα = amplitude ratio 
r  = reduced mass radius of gyration 
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t  = time 
U  = wind speed acting on model 
Ut  = tunnel wind speed 
Ured = reduced wind speed 

         ux,uy,uz = wind disturbance components 
    X(t),x(t) = displacement vector    

x  = along-span coordinate 
y  = across-span coordinate 
z  = vertical coordinate 
 
 
α  = torsional displacement 
β  = real part of the eigenvalue (Eqn. 3.11) 
γ  = imaginary part of the eigenvalue (Eqn. 3.11) 
ε  = frequency ratio 
ζ  = damping ratio-to-critical 
μ  = relative mass 
ρ  = air density 
ν  = kinematic viscosity  
ξi  = generalized coordinate of mode i 
ω  = natural circular frequency 
λ  = decay rate 
λe  = eigenvalue 
δ  = logarithmic decrement of damping 
ϕ  = phase shift 
Δt  = time interval 
κ,κ1,κ2 = coefficients for flutter calculation 
Ψ  = eigenvector 

ΦΦ ˆ,  = instrumental variables 

ΦΦ ˆ,  = modified instrumental variables  
ℜ(z) = real part of the complex number z 
ℑ(z) = imaginary part of the complex number z 
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1  INTRODUCTION 

Long span bridges, either suspension or cable stayed bridges must be designed to 

withstand the forces induced by the wind effect. In addition, such bridges are susceptible to 

aeroelastic effects, such as torsional divergence, vortex-induced oscillation, flutter, galloping, 

and buffeting in the presence of self-excited forces.  Flutter instability, which can cause 

catastrophic failures, is the main topic of the present work for the determination of 

aeroelastic behavior of the long span bridges under wind loading. 

Flutter is the dynamic aeroelastic instability phenomenon, which can be caused by the 

motion-induced or self-induced forces. Flutter is one of the most important design criterions 

for long span bridges, because flutter can lead to excessive vibration amplitudes or even total 

collapse of the bridge deck. The accurate prediction of flutter stability becomes more 

important with the increasing span length due to the decreasing flutter resistance. The most 

dramatic example for the flutter instability is the collapse of the center span (854 m) of the 

Tacoma Narrows Bridge in 1940 at a moderate wind speed of 68 km/h. 

In order to predict the response of long-span bridges to the wind loading, it is necessary 

to identify the aeroelastic parameters. The parameters required for examining whether a 

bridge deck section is prone to flutter under certain wind speeds, are called the flutter 

derivatives. 

If a system is given an initial disturbance, it starts to oscillate either in decaying or 

diverging motion, in other words the motion will be damped or grow to infinity. It should be 

investigated that if the energy applied from the flow motion is greater or less than the energy 

dissipated through the system by its mechanical damping. The critical flutter condition 

occurs as a harmonic motion at the separation line between the decaying and diverging 

motion, and the corresponding wind speed at that condition is called critical wind speed. The 

bridge deck will be unstable under the wind loading whose velocity is greater than or equal 

to the critical wind velocity. Therefore, the information for the aerodynamic loads is 

necessary to examine the effects of self-induced vibrations.  

There are some methods to determine the aerodynamic wind loading by means of the 

flutter derivatives. One possibility is the calculation of flutter derivatives by the numerical 

approach, which is based on the computational fluid dynamics. The second and the most 

widely used one is the wind tunnel testing. Especially section model wind tunnel tests are 

very common because of their reliability, simplicity of application and inexpensive 

experimental set-up compared to the other wind tunnel tests. Also there are two kinds of 
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experimental techniques to determine the system parameters through the section model wind 

tunnel testing: the free vibration technique and the forced vibration technique. In the present 

work, the first technique is applied for the calculation of flutter derivatives and the results of 

the flutter derivatives calculated by using the latter technique are used for comparison.        

System identification (SID) methods have been employed to extract all flutter derivatives 

of the bridge deck simultaneously. A reliable and simple system identification method is 

selected among a variety of methods, to extract all flutter derivatives simultaneously from 

two degree of freedom coupled-motion displacement time histories of section model tests. 

Among all the available system identification methods Modified Ibrahim Time Domain 

(MITD) method, which is developed by Sarkar [3], is found to be the most appropriate 

method for the identification of flutter derivatives. 

The quality of the data that will be used as an input for the system identification method 

is very important to obtain reliable results. The experimental set-up and the data acquisition 

system play a very important role in the quality of the data. Therefore, care should be given 

during the design and construction stages of the experimental set-up. Some suggestions are 

given for the future experiments to obtain better results.    

There are some problems in the calculation of flutter derivatives, such as uniqueness 

problem. The number of unknown parameters, which are necessary to find out the flutter 

derivatives, are less than the number of system parameters that provide information about the 

system. Such kind of problems is discussed and the best solutions are investigated.     

In the present work, a rectangular section model with an aspect ratio of 1:8 is investigated 

under smooth wind flow at zero angle of attack in the wind tunnel. The section is allowed to 

make two-degree of motion, vertical and rotational motion. The critical wind speed that is the 

stability point of the section is measured from the wind tunnel and comparison is made with 

the theoretically calculated critical wind speed by the flutter derivatives obtained from the 

system identification method. 
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2  GENERAL DESCRIPTION 

2.1 Introduction 

In the standard bridge design practice, flutter analysis is based on the flutter derivatives, 

which give information for the evaluation of flutter instability condition and the bridge deck 

aeroelastic behavior. The flutter analysis of the linear elastic structures is considered as a 

standard stability problem according to Simiu and Scanlan [2]. This consideration is based on 

two main reasons: First, the supporting structure is treated as linear elastic and its actions 

control the shape of the response. Second is the starting condition, which is considered to be 

occurring in small amplitudes that separate the stable and unstable regimes. When the wind 

acts on the bridge deck with the critical wind speed, the motion of the bridge deck is a 

sinusoidal motion with constant amplitude, which is the stability border of the bridge deck.  

The cross section properties of the bridge deck affect the flutter stability considerably. 

Different bridge deck sections are investigated in the past to find out interaction between the 

flowing fluid and the section itself. One of the most important former researches was done on 

the theoretical expressions for the aerodynamic derivatives of a thin airfoil oscillating 

sinusoidally by Theodorsen [14]. Because of the similarity in the dynamic behavior of the 

streamlined bridge deck sections with the airfoil, the Theodorsen’s theoretical evaluations 

can be used in such kind of bridge deck sections. Some studies were carried out on the flutter 

stability of the bluff body sections by Scanlan and Tomko [10], for which the Theodorsen’s 

theoretical evaluations are no more valid.         

In the present work only two degree of motion (vertical and torsional) is taken into 

account. Therefore, the section is subjected to aerodynamic wind forces associated with the 

corresponding degrees of freedom, self-excited aerodynamic lift Lh and self-excited 

aerodynamic moment Mα.  

Wind acts on the section model in only one direction, but due to some uncertainties in the 

wind tunnel, wind flow can be expressed in three dimensional as U+ux, uy, uz, which includes 

the random disturbances in the flow. However, in the present work the wind flow is assumed 

to be laminar, therefore the disturbance components of the wind flow (ux, uy, uz), which make 

turbulent flow, are neglected. 
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2.2 Theory of the Flutter Derivatives 

For a two-degree-of-freedom linear dynamic system as seen in the Fig. 2.1, the equation 

of motion can be defined as 

B

m,I

h

Mα

Lh

α

Kh

Kα

U

 
Figure 2.1: Two-dimensional aeroelastic system 
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The Eqn. 2.1 can be rewritten by inserting frequency and the damping parameters of the 

two-degree of freedom system as 

   
⎪⎭
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=αω+αωζ+α

=ω+ωζ+

αααα M)2(I

L)hh2h(m

2

h
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                ( 2.2 )  

where m and I are the model mass and mass moment of inertia of the system, respectively; ζh  

and ζα are the mechanical damping ratios-to-critical in bending and torsion, respectively; ωh 

and ωα are the corresponding natural circular frequencies; Lh and Mα are the self-excited 

aerodynamic force and moment, respectively. 

These equations are valid if the bridge deck section is symmetrical; which is the common 

case for most of the bridge deck sections. In other words, the elastic center of the section lies 

at the location of mass center, which is the case in Fig. 2.1.  

The displacement vector x(t) is expressed with respect to the system parameters, which 

will be identified in the following chapters. Therefore they should be stated clearly. 
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x(t) = C*⋅eλ⋅t⋅cos(ω⋅t + ϕ); where C* is the amplitude, λ is the decay rate, ω is the natural 

circular frequency and ϕ is the phase shift of the oscillation. 

λ = ζ⋅ω; where ζ is the damping ratio-to-critical 

ζ = c/cc = c/(2mω); c = damping coefficient, cc = critical damping coefficient 

δ = 2π⋅ζ   ⇒  δ =  2π⋅λ/ω, where δ is the logarithmic decrement of damping.  

 

In order to calculate the self-excited aerodynamic forces that are set on the right of the 

equation of motion in Eqn. 2.2 for the airfoils or thin plate sections, Theodorsen [14] 

developed a theoretical formulation with respect to the basic principles of potential flow 

theory. These aerodynamic forces are defined in terms of the displacement, velocity, 

acceleration of the oscillation, the fluid density and flow speed, the half-chord of the section 

and the Theodorsen circulatory function C(k) =  F(k) + iG(k). The aerodynamic forces 

defined as 
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where the approximate formulation for real and imaginary parts of C(k) are presented by 

Starossek [1] as 
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k = b⋅ω /U is the reduced frequency, b=B/2 is the half-chord of the thin plate, ω is the 

natural circular frequency of the motion and U is the flow velocity, ρ is the fluid density.   
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The Theodorsen function only gives good results for the thin plates or streamlined 

sections, it is not applicable for bluff cross sections. Scanlan and Tomko [10] has shown that 

self-excited aerodynamic forces acting on bluff bodies under small oscillations can be taken 

as linear with respect to the displacement and the velocity of the motion of the system in the 

corresponding degrees of freedom. The latest linear form of self-excited aerodynamic forces 

are expressed by Scanlan as 

⎥
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⎡
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H2
*, H3

*, A1
*, A4

* are called cross-flutter derivatives, which are used to calculate the 

aerodynamic force of the corresponding degree of freedom for the coupled motion by using 

the effect of the motion of the other degree of freedom. And the rest of the flutter derivatives 

H1
*, H4

*, A2
*, A3

* are called direct-flutter derivatives, which can be also obtained by the 

single degree of freedom analysis.  

K = B⋅ω/U = 2⋅k = 2⋅b⋅ω/U ; K is the reduced frequency, B is the width of the section. If 

the reduced frequency formula is rearranged, it can be also concluded that the flutter 

derivatives depend on the reduced wind velocity, which is a different way of expressing the 

flutter derivatives. 

 K = B⋅ω/U = B⋅2πf/U = 2π/Ured  ⇒  Ured = U/(B⋅f)     ( 2.8 ) 

As mentioned earlier, the flutter derivatives depend on the geometry of the section and 

the non-dimensional reduced frequency K as seen the in the Eqns. 2.6 and 2.7. It is possible 

to determine the aerodynamic coefficients by means of special designed wind tunnel tests, 

which will be explained in detail in the oncoming sections. 

The theoretical values of the flutter derivatives of a thin plate section are calculated in 

terms of Theodorsen function by matching the aerodynamic force terms in the Eqns. 2.3 and 

2.4 with the ones in the Eqns. 2.6 and 2.7, Scanlan [2]. The theoretical flutter derivatives are 

calculated with respect to the following formulas to make comparison with the ones 

identified from the free vibration test results. 

 



 

    7

)K(F
K
2)K(H*

1 ⋅
π

−=               )K(F
K2

)K(A*
1 ⋅

π
=  

⎥⎦
⎤

⎢⎣
⎡ +

⋅
+

π
−= )K(F

K
)K(G41

K2
)K(H*

2             ⎥⎦
⎤

⎢⎣
⎡ ⋅

−−
π

−=
4

)K(FK)K(G
4
K

K2
)K(A 2

*
2  

⎥⎦
⎤

⎢⎣
⎡ ⋅

−⋅
π

−=
2

K)K(G)K(F2
K

)K(H 2
*
3             ⎥

⎦

⎤
⎢
⎣

⎡ ⋅
−+

π
=

4
)K(GK)K(F

32
K

K2
)K(A

2

2
*
3  

⎥⎦
⎤

⎢⎣
⎡ ⋅

+
π

=
K

)K(G41
2

)K(H*
4          )K(G

K2
)K(A*

4 ⋅
π

−=                      ( 2.9 ) 

where F(K) and G(K) are the real and the imaginary parts of the Theodorsen function 

C(K) given in the Eqn. 2.5. 

Scanlan [2] made several comparisons between the flutter derivatives of an airfoil and 

some streamlined cross sections. Furthermore, Sarkar [3] compared the theoretically 

calculated flutter derivatives of an airfoil with the ones calculated experimentally by using 

free vibration method, which will be explained in the next section. Both derived flutter 

derivatives show good agreement in between, which proves the reliability of theoretical 

derivation of flutter derivatives for airfoils or thin plate sections.    

2.3 Flutter Response of a Full-Span Bridge 

The main reason for the calculation of flutter derivatives from different types of methods 

is that, to investigate the response of the full-span bridge deck to the wind loading and to 

calculate the critical wind speed for the deck section under the conditions of small 

displacements and linear structural behavior of the system. In the present work the results of 

the section model test are used to calculate the system parameters and the non-dimensional 

flutter derivatives, which can be applied in the dynamic analysis of a full-span bridge. 

Section model cannot be taken as a dynamic analog of the corresponding full-span bridge. 

A state-of-the-art analysis procedure is described by Scanlan and Jones [15]. The 

deformation of the full-span bridge deck with respect to any mode can be defined by the 

functions of position along the span. Therefore, the deflection components of the bridge deck 

can be represented in terms of the generalized coordinate of the mode ξi(t), the width of the 

deck B and the dimensionless normalized mode shapes hi(x), αi(x) and pi(x),  along the deck. 

The vertical, twist and sway deflections of a reference spanwise point x of the deck of a full 

bridge with three degree of freedom is represented by hi(x), αi(x) and pi(x), respectively.   
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With the governing equation of motion: 

      (t)Q)ξωξω2ζξ(I ii
2
iiiiii =++ &&&                     ( 2.11 ) 

where i=1,…N for N modes; Ii is the generalized inertia of the ith mode; ωi is the ith mode 

circular natural frequency; ζi is the damping ratio-to-critical, ξi(t) is the generalized 

coordinate of the ith mode, and Qi(t) is the generalized force defined as 

[ ]∫ ++=
Deck

ipiαihi dx(x)BpD(x)αM(x)BhL(t)Q    ( 2.12 ) 

Although a two-degree of freedom system is considered in the present work, in this 

section the bridge deck section supposed to have a three degree-of-freedom motion for the 

general explanation of the flutter response of the bridge deck. Since flow condition is 

assumed to be laminar in the present work only self-excited aeroelastic dynamic forces are 

considered, no buffeting forces are taken into account. 

Three degree of freedom self-excited aerodynamic forces are defined as: 
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    ( 2.13 )    

Flutter criterion is described by some authors in the literature, i.e. Scanlan and Jones [15], 

Sarkar [3] in the same way, but with different number of flutter derivatives. The flutter 

criterion is fulfilled when the imaginary coefficients of ξi or namely the generalized damping 

of the ith mode is equal to zero. By transforming the equation of motion in Eqn. 2.11 into the 

frequency domain, the flutter criterion is obtained as 
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where 
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where  

iiiii
Deck

iiii porα,hs,r;dx(x)s(x)r)s,G(r =⋅= ∫                     ( 2.16 ) 

By the application of above formula, it can be understood that which modes are flutter 

prone or have contribution to the flutter. For the bluff deck sections (e.g., in the original 

Tacoma Narrows case), flutter criterion can be obtained only checking the aerodynamic 

damping coefficient A2*, which exhibits a sign change from negative to positive with the 

increasing reduced wind velocity indicating the possibility of single degree torsional flutter. 

Such bluff bodies exhibit almost pure rotational response and their flutter stability criterion 

can be controlled simply with respect to one degree of freedom.  

2.3.1 Calculation of Critical Wind Speed 

Flutter criterion is specified by the damping of the system, where the total damping is 

equal to zero. The section model oscillates with a harmonic motion at the flutter limit under 

the so-called critical wind speed. There are some algorithms available in the literature to 

calculate the critical wind speed, e.g. Starossek [1], Scanlan [2]. In the present work, the 

critical wind speed is calculated with respect to the formulation developed by Starossek [1].  

The equation of motion is simplified by transforming damping and stiffness terms into 

only one term at the Starossek [1] formulation. 

              L
d

s FxKxM =+&&                                                                 ( 2.17 ) 

where, ⎟⎟
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M s   ; Mass matrix 
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    ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

αα
2

αh
2

hαhh2

cbcb
cc

πρbL                   ( 2.18 ) 

        
α)cbh(bcUπρkM

α)bch(cUπρkL

αα
2

αh
22

α

hαhh
22

h

+=

+=
       ( 2.19 ) 

Kd is the two-degree of freedom stiffness-damping matrix, where the stiffness and 

damping properties of the system are represented. The aerodynamic forces are expressed 

with respect to the complex number approach according to the Starossek [1] formulation. 

The dimensionless coefficients of flutter derivatives, cmn = c’
mn + i⋅c’’

mn are the functions of 

reduced frequency k = b⋅ω/U, where c’
mn and c’’

mn are the real and imaginary parts of the 

flutter derivative functions, respectively. The indices of the flutter derivative cmn indicate the 

force occurred in the degree of freedom ‘m’ due to the application of motion in the degree of 

freedom ‘n’.  

Both the notations (Hi
*, Ai

* ; i=1,..4) and (cmn ; m,n = h or α), which are used to define 

the flutter derivatives, have the same theoretical background. The relation between the two 

notations is given in the Table 2.1 for both previous and current Scanlan notations. The 

following conversion formulas will be used in order to compare results of flutter derivatives 

in the next chapters.  

Starossek 

Notation  hhc′   hhc ′′   hcα
′  hcα

′′   αhc′   αhc ′′   ααc′   ααc ′′  

Current Scanlan 

Notation 
*
4

2 H
π

  *
1

2 H
π

 *
4

4 A
π

 *
1

4 A
π

 *
3

4 H
π

 *
2

4 H
π

  *
3

8 A
π

 *
2

8 A
π

 

Previous Scanlan 

Notation 
*
4

4 H
π

  *
1

4 H
π

 *
4

8 A
π

 *
1

8 A
π

 *
3

8 H
π

 *
2

8 H
π

  *
3

16 A
π

 *
2

16 A
π

 

Table 2.1: Conversion between the notations of the flutter derivatives  
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The equation of motion in Eqn. 2.17 is rearranged by applying displacement and force 

vectors in the Eqn. 2.18 and eiωt term is eliminated, finally the following homogenous linear 

equilibrium system is obtained: 

 0x~L(k))s(M2ωdK =+−
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

                  ( 2.20 ) 

Eqn. 2.20 represents an eigenvalue problem for a system with two degree of freedom. 

Non-trivial solution is possible only when the determinant of the terms in brackets vanishes. 

Both ω and the Eqn. 2.20 depend on the reduced frequency k. After fixing the k value, the 

solution of the eigenvalue problem results in two eigenvalues ωj
2 and their corresponding 

eigenvector xj. The eigenvalues ωj
2 are generally complex, but just at the critical point where 

simple harmonic motion takes place, the eigenvalue ωj
2 at that point is real and positive. The 

eigenvalue ω and the reduced frequency are separated in the Eqn. 2.20 by multiplying both 

sides of the equation by  (-(Kd)-1/ω2). So that the Eqn. 2.20 is transformed to a simple linear 

eigenvalue problem: 

 

                0x~E)λ(A(k) e =−                                      ( 2.21 ) 

where   
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Provided that Kd is not singular. The complex system matrix A(k) is composed of the 

following system parameters: 
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The solution for the eigenvalues λe can be obtained by making the determinant of the 

expression [A(k)-λeE] equal to zero. So that a second order equation system can be obtained. 

0aλaλλEA 0
e

1
2e =++=−       ( 2.23 ) 

The coefficients of the Eqn. 2.23 are calculated with the application of simple calculus by 

using the system parameters defined in the Eqn. 2.22 as  
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⎪
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  ( 2.24 ) 

 

When the flutter derivatives and the system parameters are applied in the Eqn. 2.24, the 

coefficients of the second order equation system can be obtained for any k values. If the 

second order equation, Eqn. 2.23 is solved with respect to the calculated coefficients, 

eigenvalues λe
1 and λe

2, which are functions of reduced frequency, are simply calculated as 

0

2
11e

1,2 a
2
a

2
a

(k)λ −⎟
⎠

⎞
⎜
⎝

⎛±−=       ( 2.25 ) 

The complex circular frequency ω = ω’+iω” is calculated from the relevant λe value in the 

Eqn. 2.26. The real part of the complex circular frequency corresponds to the natural circular 

frequency and the imaginary part corresponds to the damping value of the system. 

i
λ

)λ(
λ

)λ(
λ
λ

λ
1ω

ω
1λ

e

e

e

e

e

e

e2
e ℑ

−
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===→=    ( 2.26 ) 
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By using the real and imaginary parts of the complex circular frequency, the logarithmic 

decrement that represents the damping of the system can be calculated as 

  
( )
( )λ
λ2π

ω
ω2πδ

ℜ

ℑ
−=

′
′′

=       ( 2.27 ) 

The damping curves of the system are drawn with respect to the corresponding reduced 

frequency values k. The torsion branch of the damping curve crosses the zero line at one of 

the specific k axis, which corresponds to the critical k value. That point is the flutter stability 

point, at which the system shows harmonic motion. The circular frequency of the torsion 

branch at the critical reduced frequency is obtained as calculated in the Eqn. 2.26. Finally, 

the critical wind speed can be simply calculated as 

critical
critical

critical
critical k

bωU
U

bωk =⇒=     ( 2.28 ) 

After the calculation of the flutter derivatives and the system parameters, critical wind 

speed of any cross section can be determined by using the explained algorithm. During the 

predesign stage of a long span bridge, which has a streamlined deck section, it is reasonable 

to estimate the critical wind speed of the streamlined section by using thin plate flutter 

theory. So that, an approximate idea can be obtained before the final calculation of the 

critical wind speed.  

2.3.2 Calculation of Phase Shift and Amplitude Ratio 

After the calculation of system parameters and flutter derivatives, the phase shift and the 

amplitude ratio between the two motions can be calculated for any particular wind speed. 

Starossek [1] has developed the following formulation for the calculation of ϕα and Rα 

values by normalizing the displacement vector with respect to the h/b given in Eqn. 2.17. 

 
/bh~
α~

R α =   and  ⎟
⎠
⎞

⎜
⎝
⎛=

/bh~
α~argαϕ      ( 2.29 ) 

Since the displacement vector is normalized; h/b=1 and the α is obtained as 
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The system parameters and the imaginary part of the coefficients a0 and a1 are obtained 

from the Eqn. 2.22 and Eqn 2.24, respectively. By using the κ  values and the flutter 

derivatives, ϕα and Rα are calculated as 

  α2
hα

2
hα

2
2

2
12

α R
cc
κκ

α~R ⇒
′′+′

+
==     ( 2.31 ) 

   α
2hα1hα

2hα1hα
α κcκc

κcκc
)α~(
)α~(tan ϕϕ ⇒

′−′′
′′−′

=
ℜ
ℑ

=    ( 2.32 ) 

2.4 Extraction Techniques 

Contrary to streamlined sections, a reliable theoretical calculation of flutter derivatives 

for the bluff cross sections or non-streamlined sections is not possible. There are some 

numerical approaches using Computational Fluid Dynamics (CFD) for the determination of 

aerodynamic derivative functions for arbitrary bridge deck sections, but their reliability 

depends on many factors. Before replacing wind tunnel testing, the reliability and the 

robustness of the CFD approach should be proved. Therefore, the final step for the 

determination of flutter derivatives should be done through wind tunnel testing on sectional 

models. 

There are two kinds of experimental methods to obtain the system parameters by using a 

sectional model of the bridge deck through wind tunnel tests: the forced vibration method 

and the free vibration method. The free vibration section model test, which has a simple 

experimental set-up, is the easiest measurement method to obtain the flutter derivatives. 

However, contrary to its simplicity of experimental set-up, the identification method used for 

the calculation of flutter derivatives from the free vibration results is more complicated 

compared to the other methods. In the present work, free vibration section model tests are 

used to obtain the flutter derivatives and forced vibration section model test results are used 

for comparison.  

2.4.1 Free Vibration Method 

By the free vibration test, the bridge deck section model is supported with the help of 

springs, and when necessary additional damping elements can be added to the system. Then 

the system is given an initial displacement in the corresponding degrees of freedom. The 

system parameters such as the frequency and the damping of the vibration for the wind-on 

conditions are determined from the system response with the help of system identification 

methods. The same procedure is repeated for the vacuum case in order to calculate the 
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mechanical system parameters. After then, the aeroelastic derivatives are obtained through 

the difference of system parameters calculated according to the wind-on and wind-off cases 

either for a coupled or uncoupled system. The free vibration method is adopted widely 

because of its simplicity. The disadvantage of the free vibration method compared to the 

forced vibration method is, that the flutter derivatives cannot be obtained directly. A suitable 

system identification technique should be applied for the calculation of both system 

parameters and flutter derivatives. The measured free vibration displacement data of the 

section model is formulated as x(t) = C*⋅eλ⋅t⋅cos(ω⋅t+ϕ) for both vertical and rotational 

displacement with the corresponding system parameters by using the appropriate system 

identification method. Therefore, the quality of the calculated flutter derivatives is highly 

depended on the performance of the system identification method and the quality of the 

experimental set-up, which affects the data quality severely. As a result, care should be given 

in every stage for the calculation of flutter derivatives.      

2.4.2 Forced Vibration Method 

Forced vibration method is one of the experimental techniques to determine the flutter 

derivatives. In the present work, this method is not explained in detail. The bridge deck 

section is forced to undergo a sinusoidal motion with constant amplitude either vertically or 

rotationally. Generally a balance system is used to measure and analyze the aerodynamic 

forces acting on the section model as explained in Bergmann [22]. Therefore, the 

experimental set-up of the forced vibration method is more complex and expensive compared 

to the experimental set-up of the free vibration method. The aeroelastic derivatives can be 

calculated with respect to the measured aerodynamic forces. On contrary to the free vibration 

method, it is not necessary to couple the degree of freedoms of the motion. Besides, it is only 

possible to extract the flutter derivatives, whose corresponding degree of freedom is forced to 

go under motion. The flutter derivatives H1
*, H4

*, A1
*, A4

* are extracted from the 

aerodynamic forces caused by the forced vertical motion, and the flutter derivatives H2
*, H3

*, 

A2
*, A3

* are extracted from the aerodynamic forces caused by the forced rotational motion. 

Two different forced vibration test results are used to make comparison with the free 

vibration test results. Forced vibration test results of Bergmann [22] and Hortmanns [23] for 

the rectangular section model having the same aspect ratio of 1:8 are used for comparison.  
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3  SYSTEM IDENT IF ICAT ION  METHODS 

3.1 Introduction 

System identification methods are very useful tools to identify unknown parameters of a 

real system according to its output that are obtained usually from experiments. In order to 

apply system identification methods on the systems that are investigated, the mathematical 

model and the experimental model from the dynamic testing are necessary. Not all the 

system identification methods are suitable or applicable for structural dynamic problems 

involving such as wind or earthquake loading. Because the measurement output data can 

contain high noise level or the system cannot be modeled mathematically due to its nonlinear 

or complex behavior.  

There are some system identification methods used in the field of structural dynamic 

problems. However, most of them are not always so efficient to identify the parameters of 

every type of system due to some reasons, which will be discussed in the section 3.2. On the 

other hand, each method has some advantages and disadvantages compared to the other 

methods. The time domain system identification methods will be discussed as applied to the 

linear structural dynamic problems, which is one of the main prerequisite for the 

identification of flutter derivatives from the system identification methods in the present 

work.  

The purpose of this chapter is to compare the available system identification methods and 

select the most efficient and the easiest method among the investigated system identification 

methods in the literature. The selected method should be able to identify the flutter 

derivatives of the bridge deck sections with the data obtained from section model tests under 

smooth flow even for a relatively noisy time history data, which can be either displacement, 

velocity, acceleration or any combination of these time histories.        

 

3.2 System Identification Methods 

Some of the system identification methods are presented here to give brief information 

and make the comparison in between. The flutter derivatives can be extracted by using the 

following methods that are used in the time domain. 

- Ordinary Least Square (OLS) Method  

- Maximum Likelihood (ML) 

- Limited Information Maximum Likelihood (LIML) 



 

    17

- Instrumental Variable (IV) Method  

- Logarithmic Decrement Method 

- Nonlinear Least Squares Method  

- Extended Kalman Filtering with Weighted Global Iteration (EKF-WGI) 

- Ibrahim Time Domain Method (ITD) 

- Modified Ibrahim Time Domain Method (MITD) 

 

In the calculation algorithm of these methods, an initial estimation of the parameters is 

necessary in order to start the identification procedure. Initial estimation is done mostly by 

OLS method, which minimizes the distance between the experimental transfer functions and 

the analytical ones calculated as a first approximation using the section model parameters.  

The identification results of a two-degree of freedom system, whose estimations are 

based on simulated data, with different identification methods, are given by Shinozuka et al. 

[17] in order to compare the results of the methods OLS, IV, LIML and ML with the known 

exact parameter values. The results show that, except for the OLS method, other methods 

show good results in the estimation of parameters. Furthermore, the time duration of the final 

estimation for the IV and LIML methods are approximately five times shorter than for the 

ML method. A second set of comparison is made by Shinozuka et al. [17] between the results 

of LIML and IV methods for the estimation of aerodynamic coefficients of a suspension 

bridge by using field measurement data of a bridge deck model. It is shown that, the results 

of LIML method yield better estimates than the IV method. Even in the presence of local 

instability of the system under greater wind speeds, LIML method estimates reasonable 

results, whereas the IV method yields no longer consistent estimates. It is interpreted from 

these sets of comparisons that the LIML method is more reliable and more efficient than the 

other three methods (IV, ML, OLS). However, Sarkar [3] has indicated that all these methods 

do not work properly under the input disturbances, which were assumed to be always present 

as a measurable non-zero value. Therefore, these methods are evaluated as unstable for the 

identification of flutter derivatives.    

In the logarithmic decrement method, the best estimate for the damping ratio is calculated 

through the peak amplitudes of the observed time histories, whose curve is fitted by OLS 

method. And the natural frequency of the system is calculated by taking the average of the 

time intervals between these peak points or simply by using standard fast fourier- 

transformation (fft) method. After the identification of the damping ratio and the frequency, 

direct flutter derivatives can be calculated. Since logarithmic decrement does not use all the 
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measured data point, it does not work properly with relatively noisy data, which makes the 

reliability of this method poor.  

Non-linear least square method is also available for the system identification, which is 

based on the Taylor series expansion of the parameters with the initial estimates. The final 

estimates of the system parameters depend on the initial estimates, so that the reliability of 

the method is affected by the quality of initial value estimation of the parameters. And the 

second disadvantage of the non-linear least square method is that, the identified flutter 

derivatives at higher reduced wind velocities exhibit great discrepancies compared to the 

results of other system identification methods. 

The extended kalman filter algorithm updates an extended space representation 

recursively as new observations starting from an initial estimate. Indeed the final estimation 

of algorithm is similar to the predictor-corrector algorithm used for solving numerical 

problems. In fact the concept is a form of sequential least square estimation adapted to the 

problem of parameter estimation for systems with measured input data. As explained in the 

previous methods the initial estimates play a very important role for the reliability of the 

identification method. Using weighted global iteration to the extended kalman filter 

algorithm eliminates the effect of initial estimate considerably. Application of weighted 

global iteration also provides to estimate the parameters with faster convergence.  

Yamada et al. [18] discussed the feasibility and the problems of the extended kalman 

filtering method applied on the flat plate wing for coupled aerodynamic force using wind 

tunnel test results as: 

(i) The extended kalman filter algorithm can estimate very accurate coefficients, even if 

the original signal includes considerable white noise. 

(ii) When the analyzed signal includes very narrow band noise, such as beating signal, it 

is difficult to eliminate the effect of noise from the measurement data. 

(iii) Sampling interval and its length play very important role in the stability of parameter 

estimation and the stability of convergence.  

(iv) In order to get stable and nontrivial solutions it is important to check whether the 

assumed system description and the observed real system are identical. For example 

when the aerodynamic force is not coupled, the system identification as coupled 

model will not give any reasonable results. This is the case at low wind speeds, where 

the coupling between bending and torsion is hardly observed.  

 



 

    19

Both ITD and MITD methods use the free vibration system output data. MITD is a 

recursive method that uses the ITD method for the initial estimates. MITD can extract all the 

direct and cross derivatives from the coupled free vibration data of 2-DOF sectional model. 

The method simplifies the identification procedure and also works well even under high 

noise level. However, the selection of time shifts (N1 and N2) is very important for the sake 

of quality of the parameters to be identified. Sarkar [3] suggested an empirical formula to 

calculate the time shifts. The numerical simulations proved the robustness and reliability of 

the results of the MITD method by different researchers, such as Chen [13], Sarkar [3], 

Sarkar and Scanlan [12], etc. Also, MITD method does not have any restriction such as the 

need for the knowledge of process or measurement noise or the need for the velocity or 

acceleration time histories in addition to the displacement time history.  

The type of the problem that is taken into account is very important for selecting the 

type of the system identification method. Therefore, it is not possible to apply each method to 

our main problem of the extraction of flutter derivatives. After examining the advantages and 

disadvantages of the methods mentioned above, MITD is selected to be the most suitable 

method for the identification of system parameters in the present work. A detailed 

explanation of the MITD method will be presented in the following sections.   

3.3 Modified Ibrahim Time Domain (MITD) Method 

A linear dynamic system can be represented with the following equation of motion as: 

)t(F)t(XK)t(XC)t(XM sss =++ &&&                     ( 3.1 ) 

F(t) is the externally acting force vector. Ms, Cs, Ks are the mass, damping, stiffness 

matrices of the system, respectively where X(t) represents the displacement vector of the 

system in the corresponding degrees of freedom. In the present work, since the system is 

considered in two degrees of freedom, which are vertical and torsional, the system 

parameters M, C, K are composed of (2×2) matrix and the displacement vector X(t) is (2×1) 

vector. 

The calculations can be carried out according to the acceleration or velocity or 

displacement time histories. In the present work displacement time histories, which are easier 

and simpler to measure, are used as the input data for the identification process. 

The measured time histories Y(t) (h(t) for vertical degree of freedom and α(t) for 

torsional degree of freedom) are represented as: 

 η(t)X(t)Y(t) +=         ( 3.2 ) 
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where η(t) is the total noise vector.  

The total noise vector composed of the noise occurred during the experiment, such as 

measurement or randomness of input and output turbulences. Main task in the present work 

is the identification of flutter derivatives from the free vibration test results under smooth 

flow. However it is not possible to obtain a 100 % smooth flow condition, most probably 

some inevitable turbulences will occur, which are due to both wind turbulence and local 

induced turbulence. The turbulences are treated as additional noise to the system. Since 

MITD method is very effective to remove the noise from the measurement data. The 

turbulence effect is therefore can be eliminated from the measurement data with the 

application of MITD method. Therefore MITD method can be applied to all deck section 

types including bluff bodies, which are affected by significant amounts of turbulence making 

the displacement time history data noisy. That is the one of the reason that MITD is selected 

as the most appropriate method among the discussed system identification methods.  

Before starting to explain MITD, it is better to start with the ITD method, which provides 

initial parameter estimation used in the first step of MITD method.  

3.3.1 Ibrahim Time Domain (ITD) Method    

A detailed description of ITD method is presented by Ibrahim, S.R., Mikulcik E.C. Both 

ITD and MITD methods are based on the free oscillating output vector X(t). That means 

external force in the Eqn. 3.1 is taken as zero (F(t)=0). In the case of turbulent flow 

condition, F(t) cannot be zero. However, as mentioned earlier the inevitable small 

turbulences are taken as additional noise to the system and therefore, ITD and MITD 

methods can be carried out for the free vibration test results even for noisy sets of data. Since 

the right side of the Eqn. 3.1 is turned out to be zero, the external force appears in the 

matrices C and K in the mathematical model.  

 The basic idea of the ITD method is explained in detail, because the MITD method is the 

modification of this method explained in Sarkar [3]. Displacement vector X(t) in the Eqn. 3.1 

is represented as in the following form:     

                                    λt
1212 ePX ⋅= ××                                ( 3.3 ) 

If the Eqn. 3.3 is substituted in the Eqn. 3.1, two complex conjugate pairs of λj, (j = 1-4) 

are obtained as eigenvalues and two complex conjugate pairs of Pj, (j = 1-4) are obtained as 

eigenvectors. Then the Eqn. 3.3 can be written in terms of the solutions obtained as 
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ijeP)X(tX                             ( 3.4 ) 

where ti is the time sampling at ith time step. The Eqn. 3.4 can be written for six discrete 

time steps. 

ΛRZΛ,QYΛ,PX ===             ( 3.5) 

 

where    X = [ Xi, i = 1-4],     P = [ Pj, j = 1-4] 

         Y = [ Yi, i = 1-4] = Xi+1 = X(ti+Δt),  Q = [ Qj, j = 1-4];    Qj = Pj⋅eλjΔt 

          Z = [ Zi, i = 1-4] = Xi+2 = X(ti+2⋅Δt), R = [ Rj, j = 1-4];    Rj = Pj⋅e
2⋅λjΔt 

 

Pj, Qj, Rj being the elements of vectors P, Q, R, respectively, 

Λij = eλjti is the element of Λ and Δt = 1/Sampling Rate; If the Eqn. 3.5 is rewritten: 

             ΛΨ̂Φ̂;ΨΛΦ ==                     ( 3.6 ) 

where the matrices in the Eqn. 3.6 defined as 

TY][XΦ =  ;  TZ][YΦ̂ = ;  TQ][PΨ =  ;  TR][QΨ̂ =        ( 3.7 ) 

The following general formula is obtained by eliminating Λ in the Eqn. 3.6 as 

      j
Δtλ

j
1 ΨeΨΦΦ̂ j=−                 ( 3.8 ) 

There are N data points of Xi, (i = 1-N). In order to make the formulations more practical, 

time shift coefficients N1 and N2 are introduced instead of Δt. The shift between the time 

histories X and Y is (N2⋅Δt) instead of Δt while constructing the matrix Φ. Similarly, the time 

shift between the matrices in the Eqn. 3.6 is (N1⋅Δt) instead of Δt. N1 and N2 are the integer 

numbers much less than the number of data points N.  

By using the time histories of measured data, the matrices Φ̂andΦ are formed with 

respect to time interval Δt and time shifts N1 and N2. Sarkar [3] suggested an empirical 

formula to select the time shifts close to optimal values. N2 = N1±(1 or 2) where N1 is 

calculated as the nearest integer below the ratio 1/(4⋅Δt⋅fd) (fd is the highest modal frequency 

of the time histories in [Hz]). 

 Φ̂andΦ have the dimension of (4×N-N1-N2) for a two-degree of freedom system.  
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       ( 3.10 ) 

 

N is the number of data points in the measurement vector Y(t). The selection of the time 

interval Δt and time shifts N1 and N2 has a great influence on the identification quality of the 

method MITD, which will be discussed later. 

The least squares equivalent of the Eqn. 3.8 can be written as 

 

  j
tN

j
1TT 1je][]ˆ[ Ψ=ΨΦΦΦΦ Δλ−                 ( 3.11 ) 

  

Modal frequencies and modal damping ratios of the system can be identified by 

calculating the complex eigenvalues of the matrix A4×4 = 1TT ][]ˆ[ −ΦΦΦΦ . Matrix A4×4 has 4 

eigenvalues, which are in the form of two complex conjugate pairs, such as (β1±iγ1) and 

(β2±iγ2). 

 

The decay rate, λ for each motion calculated as: 

λ1 = ln(β1
2+γ1

2)/2N1Δt  λ2 = ln(β2
2+γ2

2)/2N1Δt    ( 3.12 ) 

 

The natural circular frequency, ω for each motion calculated as: 

    ω1 = tan-1(γ1 / β1)/N1Δt    ω2 = tan-1(γ2 / β2)/N1Δt      ( 3.13 ) 

 

In order to prevent positive bias in the estimated values of λ, a negative time shift (N1) 

should be introduced by changing the places of Φ̂andΦ  in the Eqn. 3.11. So that the matrix 

B4×4 = 1TT ]ˆˆ[]ˆ[ −ΦΦΦΦ can be formed and the modal damping ratios and the modal frequencies 

of the two degree freedom system is calculated with the same formulation as explained for 

the matrix A4×4 by using negative time shift N1. Finally the modal damping ratios and the 

modal frequencies of the two-degree freedom system is calculated by taking the average 
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values of λ and ω calculated from the positive and negative time shifts of N1. These 

calculated parameters will be used for the initial estimates of the MITD method. 

3.3.2 Iterative Process of the MITD Method 

After the initial estimates are calculated by ITD method, MITD method removes noisy 

signals from the measured data during the iterative process and identifies the system 

parameters accurately.  

 System response for a two-degree freedom system is represented with the vector 

X(t)={h(t) α(t)}T , where h(t) and α(t) are the displacement time histories for vertical and 

torsional degree of freedoms, respectively. According to the structural dynamics, see Clough 

and Penzien [8], the free vibration response of a two-degree of freedom system can be 

written in the form: 

     h(t) = C11
* ⋅eλ1t ⋅cos(ω1t + ϕ11) + C12

* ⋅eλ2t ⋅cos(ω2t + ϕ12)      ( 3.14 ) 

     α(t) = C21
* ⋅eλ1t ⋅cos(ω1t + ϕ21) + C22

* ⋅eλ2t ⋅cos(ω2t + ϕ22)                          ( 3.15 ) 

The system parameters in the Eqns. 3.14 and 3.15 are identified by the MITD method 

from the time histories h(t) and α(t). By using these parameters, K = Ms
-1⋅Ks and C = Ms

-1⋅Cs 

matrices are calculated under the wind-on and wind-off conditions. Finally these identified 

matrices will be used for the calculation of flutter derivatives, which are the final aim of this 

work.  

Sarkar [3] presented a detailed description of the MITD method, which is used in the 

following calculations.  

3.3.2.1 Identification Process 

Parameters are identified according to the following steps. 

step (1) The initial estimates of the system parameters ω and λ are obtained from the Eqns. 

3.12 and 3.13 by the application of ITD method from the N data points of 

displacement time history data. 

step (2) By using the initial estimated parameters, N data points of system response vector 

Xg(t) are generated according to the Eqns. 3.14 and 3.15 where Xg(t) is the pseudo 

representation of the response vector X(t). The noise in the measurement data Y(t) 

and the errors in the generated Xg(t) are uncorrelated. The modified instrumental 

variables Φ̂andΦ are generated just like Φ̂andΦ  in the Eqns. 3.9 and 3.10 except 
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that Xg(t) is used instead of Y(t). Φ̂andΦ matrices having the order of 4×(N-N1-

N2). Eqn. 3.11 is modified with respect to the new instrumental variables 

Φ̂andΦ as 

j
tN

j
1TT

1je][]ˆ[ Ψ=ΨΦΦΦΦ Δλ−     ( 3.16 ) 

The calculation of the complex eigenvalues and eigenvectors of 1TT
][]ˆ[ −ΦΦΦΦ  

yield a revised set of system parameters as done in Eqns. 3.12 and 3.13. As 

explained in the ITD method, to prevent positive bias in the estimated values of λ, 

the roles of Φ̂andΦ are interchanged and with the application of same procedure 

explained above, the average values of the system parameters can be calculated as 

done in step 1. By using these parameters new time history Xg(t) is generated, 

which is used to update the matrices Φ̂andΦ . 

step (3) Step (2) is repeated with the revised set of parameters until all the values of the 

parameters of Eqns. 3.14 and 3.15 converge. Finally, K = Ms
-1⋅Ks and C = Ms

-1⋅Cs 

matrices can be estimated by using the converged values of these parameters. 

 

The amplitude Cij
* and the phase ϕij of the motions in the Eqns. 3.14 and 3.15 need to be 

calculated for the iterative process in the step(1) and step(2). The complex eigenvectors are 

usually normalized with respect to their amplitudes as well as phase. Hence, the amplitude 

ratios C11
* / C21

* , C12
* / C22

*  and the phase difference ϕ11 -ϕ21 , ϕ12 -ϕ22 can be identified from 

the first two rows of the eigenvector Ψ4×4 ,which correspond to P2×4 , calculated from the 

positive time shift cycle. Cij
* and ϕij parameters can be calculated with the vector P2×4 and the 

knowledge of the initial displacements h(0), α(0) and the initial velocities )0(),0(h α&& . 

Initial values of the displacement and velocity have no effect on the calculation of system 

parameters λ1, λ2, ω1, ω2. Also, after making some trial calculations, the same system 

matrices K and C  are calculated for both the exact and any arbitrary initial condition values. 

Therefore, it is not important to determine the exact initial condition values for the 

identification of flutter derivatives, which are calculated from the difference of the effective 

and the mechanical system matrices calculated in the wind-on and wind-off cases, 

respectively.    
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3.3.2.2 Calculation of System Matrices K and C  

The displacement time histories for vertical and torsional degree of freedoms are 

calculated in Eqns. 3.14 and 3.15 with the identified system parameters. The velocity and the 

acceleration time histories for the corresponding degrees of freedom can simply be derived 

from the displacement time histories. A discrete time state space representation of a two-

degree of freedom free vibrating system is given as: 

XX Θ=&          ( 3.17 ) 

 where 
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and  
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The matrices A and B are the functions of estimated parameters in Eqns. 3.14 and 3.15. 

And the column vector Y defined as 

Y ={ eλ1t ⋅cos(ω1t)   eλ1t ⋅sin(ω1t)   eλ2t ⋅cos(ω2t)   eλ2t ⋅sin(ω2t) }T  ( 3.20 ) 

After the calculation of system parameters, the column vectors X4×1 and Y4×1 are formed 

according to the Eqns 3.18 and 3.20, respectively. And then the matrices A4×4 and B4×4 are 

calculated by substituting the vectors X4×1 and Y4×1 in the Eqn. 3.18.   

The necessary arrangements are made for the elements of the Eqn. 3.18 as follows 

X)AB(XXAY 11 −− =→= &                              ( 3.21 ) 

If the Eqns 3.17 and 3.21 are compared, it is obvious that Θ = B⋅A-1. Finally the system 

matrices are calculated as 

     K = Ms
-1⋅Ks = ‐Θ2,1    and   C = Ms

-1⋅Cs = ‐Θ2,2                       ( 3.22 ) 
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3.3.3 Numerical Example 

A numerical example is carried out in order to investigate the reliability of the MITD 

method. The measurement data (ow_20_01.dat) having the sampling rate of 100 Hz is used 

as an example, which is obtained in the wind-off condition with the section model whose 

four sides are simultaneously lifted 20 mm upwards. The effects of the number of 

measurement data N, the time shifts N1 and N2 and the initial condition values will be 

examined on the identified parameters. 

After the sampling rate is fixed, the number of data points only depends on the length of 

the time history, which is now more important than the number of data points. The time 

history is recorded up to the minimum acceptable motion amplitude. Because, after a certain 

data point, the quality of the measured data decrease due to the increasing noise level. 

3.3.3.1 Effect of the Time Shifts N1 and N2         

As mentioned earlier, Sarkar [3] suggested an empirical formulation to calculate the time 

shifts. Time shifts not only affect the accuracy of the estimations but also influence the 

number of iterations required for the convergence of the MITD method to identify the 

parameters. Besides, in case of an irrelevant selection of the time shift values, MITD method 

cannot converge to a certain value. Therefore, the following formulation needs to be proved 

before the application of the MITD method. 

 N2 = N1 ± (1 or 2) or N2 = N1, where N1 = 1/(4⋅Δt⋅fd)             ( 3.23 ) 

where, fd is the highest modal frequency of the time histories in [Hz]. 

The second important task is to decide which N2 value is used in the MITD method given 

in the Eqn. 3.22. Therefore, five different N2 values are compared between each other. And 

the modal frequencies estimated by MITD for each different N2 values are compared with the 

ones calculated by using the standard fast fourier transformation method. So that, the 

reliability of the time shift formulas can be investigated and the optimal formulation for the 

N2 can be find out. 

From the fft analysis ωh = 16.5608 [1/s] and ωα = 28.9814 [1/s] for the measurement data 

ow_20_01. In order to calculate the N1 from the Eqn. 3.22, fd is calculated as 

 

  fd = max (fh ,fα) = ωα/(2π) → fd = 4.6125 Hz  

N1 = 1/(4⋅0.01⋅4.6125) = 5.42,  
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The time shift shifts should be integer numbers in order to form the instrumental 

variables in the Eqns. 3.9 and 3.10. Therefore, N1 is taken as the nearest integer below the 

ratio 1/(4⋅Δt⋅fd), N1 = 5. 

 

    

 N1=5 

 N2=N1-2=3 N2=N1-1=4 N2=N1=5 N2=N1+1=6 N2=N1+2=7 

ωα [1/s] 28.8795 28.8829 28.8817 28.8841 28.8863 

% Diff. btw. fft. 0.352 0.340 0.344 0.336 0.328 

ωh [1/s] 16.5509 16.5509 16.5509 16.5508 16.5507 

% Diff. btw. fft. 0.060 0.060 0.060 0.060 0.061 

λα  -0.3979 -0.3981 -0.3993 -0.3946 -0.3967 

λh  -0.0958 -0.0959 -0.096 -0.0961 -0.0963 

Table 3.1: Effect of the time shifts 

 

In the Table 3.1, the identified system parameters λh, λα, ωh, ωα are presented with 

respect to the different N2 values by using the MITD method. Also the difference between 

the circular frequency values calculated by standard fft method and by the MITD method is 

presented. As seen in the Table 3.1 the difference between the system parameters is very 

small for different N2 values. Therefore, any suggested N2 value can be used in the MITD 

method. However, to be consistent for the identification of the rest of the data, a fixed N2 

formula is selected; N2 = N1+1. And the small difference between the circular frequency 

values calculated by different methods shows not only the reliability of the empirical formula 

suggested for the time shifts, but also the reliability of the MITD method.  

Although the measurement data has a noisy time history, especially torsional motion 

data, the curve obtained by the MITD method for the present example fits the measured data 

curve very well as seen in the Fig. 3.1. 
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         Figure 3.1: Curve fit by the MITD method to the noisy time histories 
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3.3.3.2 Effect of the Initial Condition Values 

Initial displacement and velocity values are required to calculate the amplitude and phase 

of the motion. However, as mentioned previously, their values do not affect the identified 

system matrices and consequently the flutter derivatives. This is also checked by the 

application of MITD method on the same example.  

Initial condition values are calculated from the first two elements of the time history data 

as follows: 

Initial Displacement =
⎭
⎬
⎫

⎩
⎨
⎧

α )t(
)t(h

0

0   

Initial Velocity =
⎭
⎬
⎫

⎩
⎨
⎧

Δα−α
Δ−

t/))t()t((
t/))t(h)t(h(

01

01                        ( 3.24) 

 

The comparison is made between the different initial condition values. First the exact 

values are used and then two different arbitrary values are used in the MITD method. The 

same values are calculated for the system parameters λα, λh, ωα, ωh and the system matrices 

K and C  through three different cases. However, the identified time history curve does not 

fit the curve obtained from measurement time history because of the different amplitude and 

phase shift for the arbitrary selected initial condition cases. It is concluded that MITD 

method does not need any information for the initial condition values to identify the flutter 

derivatives, which is an additional advantage over the other methods. 
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4  DESCRIPTION OF THE EXP ERIMENTAL SE T-UP 

Aerodynamic parameters required for the analysis and the design of the bridge deck are 

extracted from the wind tunnel test results. Free vibration motion test results are obtained 

from the wind tunnel tests for a two-degree of freedom-coupled motion. These results are 

used in the system identification method to calculate all the flutter derivatives 

simultaneously. The experimental set-up for the section model needs to be properly designed 

to decrease the noise to a minimum level in order to extract more reliable and accurate values 

of flutter derivatives. If the details of the experimental set-up, such as springs, position 

encouders, data processing devices, etc., are designed and mounted accurately, the system 

response signals contain less noise for the input motion data to the system identification 

method, which can therefore calculate better results. 

4.1 Types of Wind Tunnel Tests for Long Span Bridges 

The aeroelastic effects of the wind on the bridge deck section, such as flutter, are 

investigated on the basis of information provided by wind tunnel tests. The proof of flutter 

stability of bridge decks is usually based on section model wind tunnel tests, which are 

proved to be a comparatively inexpensive experimental tool. Wind tunnel tests are not only 

carried out for the bridge deck, but they are also done for other parts of the bridge. Because 

aeroelastic phenomena may also affect the other parts of the bridge, i.e. cables, bridge 

pylons, hangers. Therefore different types of wind tunnel tests are developed to investigate 

aerodynamic behavior of the long span bridges. The need for the type of the wind tunnel test 

mostly depends on the economical aspects of the project and the time limitation for the 

construction of the wind tunnel test. Therefore, a brief information is given on the different 

types of wind tunnel tests explained by Simiu and Scanlan [2]. 

i ) The Full Bridge Tests on Models: This type of models should satisfy the similarity 

requirements in terms of mass, mass moment of inertia, reduced frequency, mechanical 

damping, shapes of vibration modes and also the geometric similarity to the full scale 

bridge. Construction of full-bridge models is very detailed and therefore their costs are 

relatively high compared to other types of the wind tunnel tests. The usual scale of full 

bridge test models is in the order of around 1/300. 

ii ) Three Dimensional Partial Bridge Models: This type of wind tunnel tests is developed to 

reduce the high cost of full bridge tests. With this model, only the main span of the bridge 

or mostly half of it is modeled in an economical approximation. 
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iii ) Section Model Tests: Section models represent a part of the bridge deck that is suspended 

to a supporting system, which allows the model to oscillate in the required degrees of 

freedom. The supporting system can be either a spring arrangement or a balance system 

depending on the type of the technique used, which were explained in section 2.4. Since 

section models are relatively inexpensive compared to the other types of wind tunnel 

tests, they can be constructed with the scale of 1/50 to 1/25, which reduces the 

discrepancies in the results calculated by section model and full bridge test models. Also 

section model tests provide quite reliable initial assessments such as the aeroelastic 

stability of the bridge deck. Another advantage of the section model test is calculating the 

aerodynamic properties of the bridge deck on the basis of comprehensive analytical 

studies, which can then be carried out.   

4.2 Design and Construction of the Experimental Setup 

All parts of the experimental set up were designed and constructed at the Structural 

Mechanics and Steel Structures Department and its laboratory of the Technical University of 

Hamburg-Harburg. After that the experimental set up was brought to the Ship Design and 

Construction Institute Laboratory of Technical University of Hamburg-Harburg, which has a 

sufficient wind tunnel with the cross section dimensions of 1.75 m × 1.00 m, to perform all 

the experiments. 

4.2.1 Pre-dimensioning 

First step before the construction of a wind tunnel experiment set-up was to decide some 

necessary dimensions and parameters roughly such as the distance between the springs, 

spring constants, etc. The width of the section model, B was selected as 0.3 m. The frequency 

ratio, mass and mass moment of inertia parameters were initially estimated from the 

literature, Iwamoto [9]; ε = ωα/ωh = 1.9, m = 5.0 kg, I = 0.06 kg⋅m2. 

The system was supported by eight identical springs at the corners of the section model 

and the only upper four springs were under tension with the application of the own weight of 

the system. The relation between the torsional stiffness Kα and the vertical stiffness Kh of the 

system should be determined with respect to the distance between the springs. The vertical 

stiffness Kh of the system only depends on the stiffness of the upper four springs where 

Kh=4⋅Ksp.   
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Figure 4.1: Section model supporting system                          

 

Forces Mα and Fh were calculated according to Fig. 4.1 

   x = d⋅tanα ≈ d⋅α  (provided that α is very small) 

Fh = Ksp⋅x = Ksp⋅d⋅α  

Mα = 2⋅2Fh⋅d = 4⋅Ksp⋅α⋅d2  (both sides are taken into consideration) 

Mα = Kα⋅α = 4⋅Ksp⋅α⋅d2 → Kα = 4⋅Ksp⋅d2 and Kh=4⋅Ksp.   

Kα = d2⋅Kh                          ( 4.1) 

The distance between the springs was calculated with the initial estimated parameters; 

Kh = m⋅ωh
2 ; Kα = I⋅ωα

2 ; ωα
2 /ωh

2 = ε2 

d2 = Kα / Kh = ε2⋅I/m → d = 210 mm; in the case of variation of the parameters, d was 

selected as 250 mm.  

The design of the spring was done in such a way that the spring would be always in the 

elastic range under the dead load and the approximately expected wind load. On the other 

hand, if the spring stiffness would be so high, no motion of section model could be observed. 

Finally, the spring having the stiffness of 224 N/m was selected.    
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4.2.2 Construction of the System     

A rectangular section with a length of 790 mm was tested with the section model wind 

tunnel test as seen in Fig. 4.2, whose flutter derivatives had already been measured by the 

forced vibration method. 

Rectangular Section  8:1

    

  Figure 4.2: Cross section of the model 

 

The experimental set-up is shown in the figures 4.3 and 4.4 in different views. In the Fig. 

4.5 the experimental set-up is illustrated without the wind tunnel wooden walls to give 

general idea about the whole system. The rectangular section model (1) was fixed to a 

longitudinal bar (3), which was connected to a transversal bar (4) at the outside of the wind 

tunnel. In order to make the longitudinal bar pass through the wooden walls of the wind 

tunnel, two rectangular holes were made on the wooden walls of the wind tunnel as seen in 

the Fig. 4.4. These rectangular holes should be large enough not to affect the motions of the 

system in both vertical and torsional direction. On the other hand, some turbulence occurred 

near the openings under the wind flow. To prevent these turbulences, elliptical end plates (2) 

were connected to the ends of the section model (1). The whole system was suspended by 

eight equal helical springs (5) from the ends of the transversal bars. In order to obtain 

displacement time histories of the motion, four position encouders (6) were connected to the 

transversal bars with a distance of 120 mm at one side. The vertical displacements of the 

points where the position encouders connected were measured and with the application of 

relevant calculations vertical and rotational time histories were obtained. Windward and 

leeward drag wires (8 and 9) were attached to the ends of the longitudinal bar to prevent the 

motion of the system in the along-wind direction and the motion parallel to the section 

model. Some additional weights (7) were placed on both longitudinal and transversal bars to 

adjust the mass and mass moment of inertia of the system. 

Only the section model and end plates connected to the section model were placed inside 

the wind tunnel having a direct contact with the airflow. The rest elements of the 

experimental setup were placed outside of the wind tunnel not to cause any turbulence.  
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Figure 4.3: Section model in the wind tunnel 

 

 

 

 

 
Figure 4.4: Supporting system of the experimental set-up 



 

    35

8

9

6
7

3

4

5

2 1

Wind

 

Figure 4.5: Experimental set-up 
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  Figure 4.6: Side view of the experimental set-up 
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Legend: 

1. Bridge Section Model ( 790 mm×300 mm ×4 mm ) 

2. Elliptical End Plates 

3. Longitudinal Bar 

4. Transversal Bar 

5. Helical Springs 

6. Position encouders for measuring vertical displacement 

7. Additional Weights 

8. Windward drag wire  

9. Leeward drag wire with helical spring 

   

The separation between the outside and inside of the wind tunnel was provided by the 

wooden plate wall. Although the width of the wind tunnel is 1750 mm, it is required to 

provide 800 mm spacing between the inner faces of the wall at the location where the section 

model is placed. Therefore, the length of the section model was designed to be 790 mm with 

the 4 mm thickness of the one end plate and 1 mm spacing in between the end plate and the 

wall. The distance between the wooden plate walls was decreased along the wind tunnel from 

1750 mm to 800 mm continuously to avoid any turbulence flow. But the spacing between the 

inner faces of the wall is kept constant at the location where the model is mounted. 

After the construction of the system, the system was given an initial displacement with 

the electro magnets and steel wires by lifting the ends of the transversal bars. And the 

displacement time histories were obtained to get the system parameters for the wind-off case 

by the MITD method. The diagonal elements of the mechanical stiffness matrix, which 

correspond to the wind-off case, were used for the calculation of mass moment of inertia 

with the knowledge of mass of the system m and the half of the distance between springs d, 

which was selected as 250 mm in the section 4.2.1.   

The total weight of the system m is measured as 6.538 kg and the mass moment of inertia 

I is calculated roughly as 0.1359 kg⋅m2 by using relevant formulation. The greatest 

contribution comes from the end plates to the mass moment of inertia of the system with 48.5 

% due to their high eccentric weight according to the center of rotation.  

The mass moment of inertia can also be calculated from the identified system stiffness 

matrix as shown below: 
mech
11K  = m-1⋅Kh   →   Kh = m⋅  mech

11K  

mech
22K  = I-1⋅Kα   →   I = Kα / mech

22K  , where Kα = r2⋅Kh in the Eqn. 4.1.  
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  I = r2⋅Kh / mech
22K     →   I = m⋅r2⋅  mech

11K  / mech
22K                  ( 4.2 ) 

If the Eqn. 4.2 is solved for the initial condition case bs_10 under vacuum case, whose 

mechanical stiffness matrix is given in Table 5.3, the mass moment of inertia of the system is 

calculated as 0.1348 kg⋅m2. The difference between the mass moment of inertia values, 

which are calculated by the structural mechanics formulation and the MITD method, is 

calculated as 

   Difference in I = %82.0100
1359.0

1348.01359.0
=×

−  

The small amount difference in the mass moment of inertia calculation results proves the 

reliability of the MITD method.  

4.2.3 Calculation of the Wind Velocity 

In the present work, the wind is applied to the section model with zero angle under 

smooth flow. Wind velocity is known at the entrance location of the tunnel. Because of the 

change of the wind tunnel cross section due to the wooden plate walls, wind velocity acting 

on the section model is not known and needs be determined in order to find out the flutter 

derivatives. According to the fluid mechanics, the continuity principle can be applied to find 

the wind velocity acting on the section. However since there are some openings at the top of 

the wind tunnel, this principle is not applicable. A standard pitot-static tube is used for the 

determination of the horizontal mean wind velocity acting on the section under smooth flow. 

Wind speed is calculated with a pitot-static tube, which is based on the pressure difference at 

some specified points on the tube.  

Before starting the experiments, a pitot-static tube is placed properly in the middle 

location of the section model before the installation of the section model in the wind tunnel. 

The hole at the end of the tube has to be placed with zero angle to the wind direction to 

measure the pressure difference properly. The tunnel wind velocity Ut is increased from the 

wind speed of 2.5 m/s with an increment of 0.5 m/s till the wind speed of 10.5 m/s, which is 

greater than the critical wind speed. The wind speed is measured at the location of pitot-static 

tube. Each measurement was repeated three times in order to increase the reliability of the 

measurements and an average value is used for each wind speed. By this way the wind 

velocity U acting on the section model is obtained with respect to the tunnel wind velocity. 

 As seen in the Fig. 4.7, there is a linear relation between the applied tunnel wind velocity 

and the measured velocity at the location of the section model. This linear relationship is 

calculated as 



 

    38

 

               kv = (measured wind vel.) / (applied tunnel wind vel.) = U/Ut = 1.405  

By using this relation, the wind velocity acting on the section model can be calculated for 

any arbitrary wind tunnel wind speed. 

Furthermore, wind velocity distribution along the section model has to be investigated. In 

order to obtain reliable data, the wind action should be uniform along the section model. 

Therefore, under the application of a constant tunnel wind velocity, wind velocity from the 

mid of the section till the end of the section is measured at every 20 mm. The wind velocity 

distribution is obtained by assuming symmetrical wind velocity distribution for the other side 

of the section model. An example diagram is drawn for the wind tunnel wind speed 8 m/s in 

the Fig. 4.8.  
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Figure 4.7: Wind speed acting on the section model  
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   Figure 4.8: Wind speed distribution along the section model 

 

As seen in the Fig. 4.8 wind velocity distribution is not completely constant because of 

measurement errors or turbulence effects, which are so small that the distribution can be 

taken as constant. 

The wind speed range acting on the section model is obtained 3.85 to 14.53 m/s 

according to the Fig. 4.7. By using the Eqn. 4.3, it is found out that the Reynolds number 

varies between 0.75×105 and 2.9×105 with a constant section model width B of 300 mm. 

5
air 10*5.1;

BU
Re −=ν

ν
=  m2/s  at 20°              ( 4.3 ) 

Compared to the original Reynolds number that is around 1⋅107, the influence of the 

Reynolds number in the calculated range is assumed to be negligible. For comparison, 

Reynolds number of the present experiments is taken as 2.75×105, which corresponds to the 

critical case.  

4.2.4 Important Elements of the Experimental Setup 

4.2.4.1 Springs 

Springs play a very important role in the experiments. They should be selected properly, 

because they represent the stiffness of the system. Eight tension springs will be used in the 

experiment, all of which have the same length and stiffness. 4 springs are used in each side of 
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the tunnel and two of them are connected at the ends of the transversal bars to each other in 

series. The springs are selected in a way that they should remain in the elastic range under the 

most unfavorable case during the experiment. The maximum static deformation and the 

maximum expected deformations due to the vibrations under wind flow should be taken into 

account and the total calculated deformation should be less than the elastic deformation of 

the spring. Under these conditions, the stiffness of the spring will not change during the 

experiments, which affects the quality of the results severely.  

Length of the springs is another important design criterion that should be taken into 

consideration. The distance between the upper and lower fix points and the ends of the 

transversal beams are covered by the spring and some bar elements in different lengths to 

adjust the system. Since the above springs carry the weight of the system, they are loaded 

more than the lower ones. Therefore after deciding the spring length, length of the bar 

elements are determined to hold the system in the required position. As seen in the Fig. 4.4, 

longer bar elements are used under the transversal beams and shorter bars are used for the 

upper part. 

4.2.4.2 Drag Wires 

When the wind is applied to the section model, it is forced to move in the wind direction 

due to the drag force caused by the wind pressure. Also due to some random turbulence, the 

section can move perpendicular to the wind direction. In order to restrain the undesirable 

motions in the along-wind and perpendicular-wind directions, the ends of the longitudinal bar 

are connected to the drag wires on the upstream and downstream sides. The drag wires have 

also a little contribution to the vertical and torsional stiffness of the system. In order to 

reduce these effects, drag wires are connected to springs, which provide some flexibility to 

the system, in the downstream of the wind flow. All the drag wires are used in the horizontal 

plane of the section model without having any turnbuckles, which reduce the tension force on 

the wire. 

4.2.4.3 Electro Magnets 

Electro magnets are used to give the initial displacement to the system from the outside 

of the tunnel. As seen in Fig. 4.4, four magnets are used in the experimental setup, which are 

placed at the ends of the transversal bars at both sides.  

The magnets are connected to a wire, which has a constant length and works only under 

tension. Besides the tension wire, each magnet is tied to a plastic rubber band, which is 

shorter than the wire. So that the plastic rubber band will be under tension when the magnets 
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are connected to the transversal bars. One end of the wires is fixed to the top steel bar and the 

other end holds the one end of the transversal bar when there is electric current through the 

electro magnet. By this way, the end of the transversal bar is lifted up to a certain level, 

which is specified by the length of the wire. In the experiments two sets of wires with 

different length are used to compare the initial condition effect on the system identification 

process. 

When the electric current cut off through the electro magnet, the system releases from the 

electro magnets. By this way the system is given an initial displacement and consequently it 

starts to oscillate with a decaying motion for the wind speeds lower than the critical wind 

speed. In order to prevent any contact or strike of the electro magnet to the transversal bar or 

to the springs after the release of the system from the initial condition, the electro magnet is 

pulled upwards with the tension force on the plastic rubber band. 

For each wind velocity electro magnets are attached to the transversal bars in different 

ways with different length of wires. First, only initial vertical displacement is given to the 

system by connecting all four magnets to the ends of the transversal bars with different 

length of wires to lift the system upwards by 10 mm and 20 mm, respectively. Therefore, the 

effect of the initial vertical displacement on the results of the identified system parameters 

can be compared. Then, the system is given both vertical and torsional initial displacement 

by connecting the front two magnets to the ends of the transversal bars to lift the windward 

side of the system 10 mm upwards.  

For each set of initial condition case, the section model should be given exactly the same 

vertical and torsional displacements in all the experiments performed under different wind 

speeds. Otherwise, the results of the identified system parameters will not be consistent. 

Because the maximum amplitudes of the oscillation, which is given to the system by the 

initial displacement, play a very important role in the identification of system parameters for 

the free vibration tests. All the tests were carried out for three different initial condition cases 

with respect to each wind velocity to investigate the initial condition effect. Also for each 

wind speed and initial condition case, the tests were repeated for five times and their results 

were averaged to get more reliable results.  

4.2.5 Data Acquisition  

A suitable sampling rate should be selected to record the data. A low sampling rate is not 

convenient for the system identification method. On the other hand a high sampling rate not 

only requires greater disk space at the computer, but also it requires more time to identify the 
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system parameters. Therefore, 1/100 sampling rate is selected to record the data and the 

identification of the system parameters will be done with respect to this sampling rate. 

Four position encouders are placed symmetrically according to the center of the model on 

each side of the transversal bars with a distance of 120 mm as seen in the Fig. 4.6. The 

vertical displacement of the points, where the position encouders are connected on the 

transversal bar, are measured with respect to the specified sampling rate. Multi channel data 

acquisition system and data acquisition Software HBM-Catman are used. The section model 

is given a fixed initial displacement by the electro magnets and it starts to oscillate both in 

vertical and rotational direction. Time history data are obtained by the software with five 

channels. First one represents the time at which the displacements are measured and the rest 

four channels represent the displacement data of the four points, where the position 

encouders are connected to the transversal bars. From these data points the vertical and the 

torsional displacement time histories of the section model are calculated. 

4.3 Suggestions for the Future Experiments 

The deficiencies of the present experimental set-up will be discussed and some 

appropriate suggestions are given for the future works to increase the efficiency and to 

improve the quality of the experimental data, which provides more reliable input data for the 

identification of the system parameters. 

− For the free vibration tests under different wind speeds, the maximum amplitude of 

the oscillation of the section model should be the same for each set of experiment that 

are carried out with the same initial displacement condition. In other words the 

section model should be released from the same position. This condition is partially 

fulfilled by suspending the section model to the upper fix points by tension cables. 

However, before the section model is released from its initial position, it is affected 

by the wind pressure in upward and downward directions, when the air is flowing 

through it. For the lower wind speeds, the wind pressure is so small that it can be 

neglected, which is not the case for higher wind speeds. Since the wires do not work 

under compression, the section model is lifted upward by the wind pressure at the 

high wind speeds and different initial displacement is given to the system for different 

wind speeds. To prevent the movement of the section model before releasing, it 

should be fixed to the upper and lower fix points by the wires at the same time; or 

instead of cables, compression bars can be used to hold the section model to the upper 

fix point.  
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− The selected sampling rate of the data is very important, because it directly affects the 

length of the data. All the experimental data are obtained with the same sampling rate 

of 1/100 second. In order to investigate the effect of the sampling rate on the 

identification of system parameters and to find out the most appropriate sampling 

rate, it would be better if the data are obtained with two more different sampling rates 

such as 1/200 s and 1/400 s at least for the wind-off case.   

− The number of useful data affects the quality of the identified system parameters. The 

more number of experimental data, the better quality for the identified parameters. 

Therefore, if the system is given greater initial displacements, the length of the data 

will be longer and the quality of the identified parameters will be better. The length of 

the useful data also depends on the aerodynamic damping of the motions in the 

corresponding degrees of freedom. Therefore, the system with lower damping ratio 

can result in better results especially at the higher wind speeds. The friction in the 

position encouders not only decreases the reliability of the experimental data, but also 

gives additional damping to the system. For that reason, the friction in the position 

encouders should be decreased to the minimum level or time histories of the motions 

should be obtained with different type of instruments, which give less damping to the 

system.  

− At higher wind speeds, there is a considerable scatter in the identified flutter 

derivatives, which will be discussed in the following sections. In order to reduce the 

scatter in the results, Iwamoto [9] suggested to make the experiments with a heavier 

section model having high mass moment of inertia as long as the supporting system 

has sufficient capacity. Otherwise, the springs will not be in the elastic range, which 

is not desirable in the wind tunnel tests. 

− In order to understand the complete physical mechanism of the bridge desk section to 

wind loading, all flutter derivatives related with the vertical, torsional and lateral 

motions should be considered. 3-degree of freedom section model wind tunnel tests 

and the application of system identification method with respect to a 3-dof system are 

required to find out all 18-flutter derivatives. Furthermore, the direct flutter 

derivatives can be extracted from single degree of freedom systems. The results of the 

single degree of freedom motion tests provide the opportunity to compare the direct 

flutter derivatives identified from the results of the coupled motion wind tunnel tests.  

− The geometrical shape of the section model has a very big influence on the 

determination of flutter derivatives. Using different cross sections, such as 
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streamlined and bluff bodies, provide the opportunity to compare behavior of such 

cross sections from the aerodynamic point of view. Especially, the theoretically 

calculated flutter derivatives from a thin plate could be compared with the ones for 

the corresponding section models, to investigate the applicability of the theoretical 

formulation of the flutter derivatives. 

4.4 Summary 

Since the section-model wind tunnel tests are easier and more economical than the other 

types of wind tunnel tests, they are used widespread for the design of long span bridges. In 

order to obtain reliable results, care should be given to each step of the procedure, from 

model construction till the acquisition of data and the identification of system parameters 

with the help of the system identification method. 

In this chapter the experimental set up is discussed in a detailed way. In order to make a 

successful experiment, all the members of the section model should be designed and selected 

properly. Also a proper construction of the system in the wind tunnel is very important for 

the success of the experiment and the quality of the obtained data.  

It is impossible to remove all the friction from the system. There will be certainly some 

unavoidable friction, which is treated as additional noise in the data. Such as the friction in 

the position encouders, the friction between the end plates of the section and the walls of the 

wind tunnel. The end plates should be very close to the wind tunnel walls to prevent the 

aerodynamic end effects, but also there should be sufficient space between them to prevent 

the end plates touch the wall. 

Electro magnets are used in this experiment for giving an initial displacement to the 

section model. For all experiments with different wind speed, same initial displacement 

should be given to the model. Therefore the release system has to be properly designed to 

give consistent initial displacement for all experiments. 

The test involves the measurement of the decay in amplitude in time with an initial 

displacement of the bridge deck motion in vertical and torsional direction for various wind 

speeds in smooth flow. In order to get good results from the experiments, each set of 

experiment is repeated 5 times and system identification process is carried out for each set of 

experimental data and finally the average of the results are used to find out the parameters of 

that experiment. By this way, the error level could be decreased to a better percentage. 
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5  EXTRACTION OF FLUTTER DERIVATIVES 

The flutter derivatives cannot be extracted directly from the experimental results. First, 

the useful displacement time histories of the motions should be obtained from the wind 

tunnel experiment results that are carried out under smooth flow. After then, by using the 

time histories, all eight-flutter derivatives can be calculated simultaneously. 

5.1 Calculation of the Time Histories 

Displacement time histories are required as input data of the system identification 

method. In order to investigate the vertical and rotational motion of the system, first the 

system is given an initial displacement. For comparison the experiments are done under three 

different initial condition cases that are named as bs_10, bs_20 and os_10 where the terms 

‘bs’ and ‘os’ mean ‘both sided’ and ‘one sided’, respectively. The system is suspended to the 

fix points on the wind tunnel with different length of wires in different combinations to apply 

different initial conditions to the system. In the wind tunnel tests, the main emphasis is given 

to the initial condition cases bs_10 and os_10. For the initial condition case bs_20, the wind 

tunnel tests are not carried out for all wind speeds as done for the other initial condition 

cases. Therefore, the results of the bs_20 are used only for comparison.  

 For bs_10 and bs_20, both ends of the transversal bars are suspended with the different 

length of wires to lift the system upwards by 10 mm and 20 mm, respectively. For os_10, 

only the front ends (on the windward side) of the transversal bar are lifted upwards by 10 mm 

to give both vertical and torsional displacement. The initial displacement values, which are 

given in Table 5.1, are calculated from the first data points of the displacement time histories. 

 

Initial 

Condition 
bs_10 bs_20 os_10 

ho [mm] 8.940 18.570 4.160 

αo [grad] 0.275 0.170 1.150 

 
    Table 5.1: Initial displacement values for different cases 
 

 
The displacement of the points where the position encouders are connected on the 

transversal bars, are obtained at every 1/100 second time interval. For each set of experiment, 

4 sets of data are available from the data acquisition software; time histories of the 4 points, 2 
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at windward and 2 at leeward side of the section model with a distance of 120 mm in 

between. The corresponding points are named as shown in the Fig. 5.1 with respect to their 

locations according to the section model. By using these data points the displacement time 

history data X(t), which are the vertical displacement time history h(t) and the torsional 

displacement time history α(t), are obtained. 
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Figure 5.1: Measurement points on the system   

 

During the experiments, before starting to obtain the displacement time histories of the 

section model through the four points shown in Fig. 5.1, a zero location, which is the stable 

position of the section model, should be specified for the data acquisition software. After the 

system is given an initial displacement, it starts to oscillate around the zero location. Above 

the zero location, the displacement time history is assigned as negative and positive under the 

zero location. However, this not the case after certain wind speeds due to the wind pressure 

acting on the section model. After the wind tunnel wind velocity Ut = 7.0 m/s, first the 

section model is suspended from fix points and than zero location is defined. Since 

downward displacement of the section model is assigned as positive, it oscillates in the 

positive side of the displacement time history, rather than oscillating around the zero 

displacement. Therefore, the average of X(t) is deducted from its values to shift X(t) to the 

zero displacement ordinate in order to make X(t) oscillate around the zero displacement, 

which will be used in the MITD method.  
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5.1.1 Vertical Displacement Time History, h(t) 

The main subject of this section is to obtain the least noisy vertical time history data of 

the section model. So that 7 different combinations are calculated by using the data points on 

the corners shown in the Fig. 5.1 to get the best vertical time history. Some abbreviations are 

used to represent the combinations of time histories as follows    

1) VR : The average displacement of the points (FR & BR) on the right side of the model. 

2) VL : The average displacement of the points (FL & BL) on the left side of the model. 

3) VF : The average displacement of the points (FR & FL) on the front side of the model. 

4) VB : The average displacement of the points (BR & BL) on the back side of the model. 

5) VD1 : The average displacement of the points (FR & BL) on the first diagonal of the 

model. 

6) VD2 : The average displacement of the points (FL & BR) on the second diagonal of the 

model. 

7) Vave : The average displacement of all the four points (FR, FL, BR, BL) of the model. 

 

7 different vertical displacement time histories are calculated and shown in the Fig. 5.5 

according to the experimental data v5.0_20_01. Three sets of comparisons are carried out 

between the three different h(t) distributions of ‘Vave with VR and VL’, ‘Vave with VF and 

VB’ and ‘Vave with VD1 and VD2’ in the figures 5.5a, 5.5b, 5.5c, respectively. In all 

comparisons, Vave data are always in between the other two time histories. The time 

histories of the diagonals almost fit with the Vave data and for the time histories of front and 

back sides of the model nearly fit with Vave except for the peak values. However, the time 

histories calculated according to the right and left side of the section model have big 

discrepancies to the Vave data. Some unavoidable motions such as torsional motion in x and 

z direction and sway motions in x and y direction shown in the Fig. 5.1, cause the 

discrepancies in the displacement time histories. Since the effects of such unavoidable 

motions are partially eliminated for the Vave by using the four data points, its results are 

evaluated to be the best among the other combinations of the time histories. Therefore, Vave 

values are used for the vertical displacement time history for the each experimental result. 

5.1.2 Torsional Displacement Time History, α(t) 

The necessary set of data for the calculation of torsional time history, α(t) should be the 

same with the ones used for the calculation of h(t) data to obtain consistent results. 

Therefore, the displacements of the points Fa and Ba as seen in the Fig. 5.1, are calculated by 
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taking the average values of front and back side of the section model, respectively. The 

average values Fa and Ba and the difference between these two points, which is 120 mm, are 

the necessary information in the calculation of α(t).  

A proper sign convention should be specified for α(t) data. In the present work, it is 

specified that the rotation of the section model in the counterclockwise direction is negative 

and the clockwise direction is positive. So that the calculation of α(t) is done for two 

different cases according to the position of the points Fa and Ba as shown in Fig. 5.2 

 

OBa
0

(-) upwards

(+) downwards

Fa

   

  Figure 5.2: The vertical motion sign convention of the mid of the section model   

 

Calculation of the α(t) is done with respect to two different cases 

case-1)  When Ba(t) > Fa(t), α(t) value will be negative 

                   α(t) = − asin [ abs{ abs(Ba(t)) - abs(Fa(t)) }/120 ] 
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         Figure 5.3: Negative α(t)  

 

case-2)  When Fa(t) > Ba(t), α(t) value will be positive 

       α(t) = asin [ abs{ abs(Fa(t)) – abs(Ba(t)) }/120 ] 
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           Figure 5.4: Positive α(t)  

 

5.1.3 Length of the Displacement Time Histories 

The length of the data affects quality of the identified parameters and useful length of 

data should be decided properly for each test. The calculated vertical and torsional time 

histories cannot be applied directly to the system identification method. In the case of 

decaying motions, the amplitude of the motion decays according to the damping ratio of the 

system and the relative noise level in the motion increases with the decaying motion. 

Therefore, the end of the data should be cut off at a limit value, whose relative noise level is 

acceptable. 

Besides, the time just after the system is released, the relative noise level of the 

displacement time histories is higher for that time interval. Moreover, in order to get better 

results, the displacement time histories should start with their maximum amplitude values. 

Because of these reasons, some of the data at the beginning of the time history is eliminated 

when necessary. 

In order to apply any system identification method to a two-degree of freedom coupled 

motion, the length of the both displacement time histories of the corresponding degrees of 

freedom should be the same. The length of the both data is decided according to the degree of 

motion with shorter length of data, which is h(t) in the higher wind speed tests.     

The length of the useful displacement time history data decreases with the increasing 

wind velocity. The vertical motion is damped more rapidly than the torsional motion due to 

its increasing damping ratio with the increasing wind velocity. The vertical time histories for 

the wind velocities 3.84 m/s, 8.39 m/s, and 12.46 m/s of the initial condition case bs_10 are 

plotted in the Fig. 5.6. As seen in the Fig. 5.6, the useful length of time history decreases 
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with the increasing wind velocity. Especially for some initial condition cases, at the flutter 

speed and after the flutter speed the number of useful data is not sufficient to calculate the 

flutter derivatives with the system identification methods, which is also mentioned by 

Iwamoto [9], Chen [13], Wienand [4]. Therefore, at higher wind speeds the quality of the 

identified parameters decreases due to the limited data points.  

5.1.4 Filtering of the Data  

The calculated displacement time history data can be filtered before application of the 

data to the system identification method to reduce the noise level of the data. The noisy data 

with the frequency of a particular value can be eliminated by using lowpass filters. The 

specified frequency value after which the data will be cut, influence the quality of the filtered 

data. If a high frequency is specified for the filtering, then the filtering does not change the 

noise level so much. On the other hand, if a low frequency is specified for the filtering, then 

it may completely change the properties of the data, which is undesirable. In the present work 

in order to make the comparison between the filtered and the without filtered data, a filter 

with an upper cut-off frequency of 10 Hz is used, where the vertical and torsional motion 

frequencies at zero-wind condition are 2.64 and 4.59 Hz, respectively. That means, the data 

having the frequency of 10 Hz or more will be removed. 

In most of the cases the results of the identified parameters are almost equal to each other 

calculated with filtered data and without filtered data. It has been proven that the MITD 

method works well even with the noisy data, so that the necessity for filtering will be 

investigated with the torsional displacement time history data v7.5_10_01, whose data have 

considerable amount of noise. Since the filtering removes some part of the data, which 

changes the structure of the data, the curve fit calculated by system identification method of 

the filtered data is even worse than the curve fit of the without filtered data as seen in the Fig. 

5.7a and 5.7b. Especially at the peak points of the filtered data do not fit properly, whereas 

the without filtered data even with noisy data points fit very well. 

The results of the identified parameters for filtered and without filtered data v7.5_10_01 

are presented in the Table 5.2. 
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  λh λα ωh [1/s] ωα [1/s] [C] [K] 

1,931 -0,232 297,783 13,337 
With filter -1,023 -0,241 17,219 27,947 

-3,702 0,598 24,310 781,559

1,929 -0,238 297,797 13,650 Without 

filter 
-1,022 -0,259 17,219 27,952 

-3,552 0,632 24,421 781,775

0,104 2,435 0,005 2,293 Difference 

[%] 
0,186 6,729 0,001 0,015 

4,226 5,273 0,457 0,028 

 
  Table 5.2 : System parameters calculated with filtered and without filtered data 

 

As seen in the Table 5.2, the difference between the two results is in the allowable range. 

Therefore, in order to reduce the calculation time and not to disturb the original data, no 

filtering is applied to the displacement time history data.  

 

5.2 Uniqueness Problem 

The aerodynamic forces Lh and Mα are rewritten by converting the wind velocity U and 

reduced frequency K terms into the circular frequency ω and the deck width B terms by 

using the equation K = B⋅ω/U. Then the Eqns. 2.6 and 2.7 are written as  
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The section model system has a coupled motion, oscillating in vertical and rotational 

direction with the circular frequencies of ωh and ωα, respectively. Therefore, the problem 

arises that which modal frequency will be used in the Eqn. 5.1 and in the calculation of the 

reduced frequency. By taking both the model frequencies into account, the complete 

aerodynamic forces can be written as  
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where Kh = B⋅ωh/U and Kα = B⋅ωα/U 

As seen in the Eqns. 5.2 and 5.3, there are totally 16 flutter derivatives; Hi
*(Kh) and 

Hi
*(Kα), i = (1-4) for self-excited aerodynamic lift force Lh and Ai

*(Kh) and Ai
*(Kα), i = (1-4) 

for self-excited aerodynamic moment Mα. It is not possible to identify all the unknown flutter 

derivatives simultaneously due to the lack of information. From the system identification 

method, it is only possible to get information for 8 parameters, which are two sets of modal 

frequencies, modal damping ratios, amplitudes and phase shifts for both degrees of freedom. 

Therefore, the number of unknown flutter derivatives is more than the number of known 

parameters, which is called the uniqueness problem. 

In order to solve uniqueness problem, the number of unknowns should be decreased to 

the same number of identified parameters. As done by Iwamoto [9], the level of coupling 

between the vertical and torsional motions should be investigated. As an example, the 

displacement time histories of the section model for the tunnel wind speed Ut = 7 m/s are 

investigated. It can be interpreted from the Fig. 5.8 that the coupling between these two 

motions is assumed to be weak because the vertical motion and the rotational motion do not 

behave in the same manner, for example both motions are not prevailing at the same time or 

the other way around. Therefore, the number of unknown flutter derivatives can be reduced 

to 8 by neglecting the terms αα &and related with ωh and the terms handh &  related with ωα. 

By this way both the number of unknown parameters and the number of information will be 

equal to each other, which prevents the uniqueness problem.  

Besides, Sarkar [3] suggested that the flutter derivatives H1
*, H4

*, A1
*, A4

* associated 

with the vertical motion are calculated by using the circular frequency ωh, and the flutter 
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derivatives H2
*, H3

*, A2
*, A3

* associated with the torsional motion are calculated by using the 

circular frequency ωα. Because according to the calculations of Sarkar [3], the vertical 

circular frequency calculated with respect to the single-degree of freedom motion and the 

two-degree of freedom motion are close to each other, which is the same case for the 

torsional circular frequency. And also in the same work, the direct flutter derivatives 

extracted from single degree of freedom motion and coupled motion match very well, which 

proves that the torsional motion has no influence on the flutter derivatives related with the 

vertical motion and vice versa. According to this simplification, which is suggested and 

proved by Iwamoto [9] and Sarkar [3], Eqns. 5.2 and 5.3 can be written as 
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According to the Eqns. 5.4 and 5.5 it is possible to identify all the flutter derivatives 

simultaneously from the free vibration test results.  

 

5.3 Calculation of the Flutter Derivatives  

The following calculation procedure is applied to extract the flutter derivatives. In case of 

any calculation or logical error at one step can result in big errors in the calculation of flutter 

derivatives. Therefore, care should be given in each step in order to get better results.  

step (1) By using the electro magnets the section model is given a fix initial displacement in 

vertical or rotational direction or both. Then, the useful free vibration time histories 

of the two motions are calculated as explained in the section 5.1. The noise level in 

the displacement time histories affect the identified parameters. Therefore, this step 

has the greatest importance among the others.   

step (2) Time Shifts N1 and N2 of the motion is required for the MITD method. As 

explained in Section 3.3.3.1, time shifts are calculated with respect to an empirical 
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formula for each experiment. Time shifts affect both the quality of the identified 

parameters and the number of iterations required to converge. 

step (3) First, the system identification method is carried out for the wind-off case to 

calculate the mechanical system matrices mechmech CandK and the system 

parameters λh, λα, ωh, ωα of the two-degree of freedom system from the free 

vibration time histories. In order to increase the quality of the results, each set of 

experiment is carried out five times and therefore, five free vibration displacement 

time histories having the same data length are obtained. So that this step is repeated 

five times and an average value of the mechanical system matrices and the system 

parameters are obtained. 

step (4) Next, all the previous steps are repeated for the wind-on cases for the calculation of 

the effective system matrices effeff CandK and the system parameters λh, λα, ωh, ωα. 

The only difference is that the free vibration time histories are obtained from the 

experimental results that belong to a particular wind speed. The wind speed U 

values used in the calculations have an increment of 0,7 m/s (Ut = 0.5 m/s) from 

3.84 m/s (Ut = 2.5 m/s) up to the wind speed that has sufficient time history data for 

the system identification method. The modal frequencies ωh, ωα identified from the 

free vibration data of the wind-on case are more important than the other system 

parameters, because both modal frequencies will be used in the calculation of the 

flutter derivatives and their corresponding reduced velocities in the Eqns. 5.4 and 

5.5.  

step (5) The flutter derivatives for a particular wind speed are calculated by using the 

identified effective and mechanical system matrices and the modal frequencies of 

the corresponding wind speed.  

step (6) In order to compare the effect of the initial displacement conditions on the flutter 

derivatives, the section model is given three different initial conditions. Therefore, 

all the steps from 1 to 5 should be repeated for each initial condition case and three 

different sets of flutter derivatives are extracted for comparison.   

5.3.1 The Effect of Initial Condition 

System parameters and mechanical system matrices of wind-off cases are obtained for 

three different initial condition cases. In the Table 5.3, the average values of these parameters 

among the five different experimental results are presented as 
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Initial 

Condition 
λh λα ωh [1/s] ωα [1/s] C = Ms

-1⋅Cs K = Ms
-1⋅Ks 

0.267 -0.004 275.544 -0.625 
bs_10 -0.133 -0.324 16.600 28.904 

-0.368 0.647 14.147 835.542

0.193 -0.005 273.950 -1.356 
bs_20 -0.096 -0.385 16.552 28.840 

-0.084 0.770 10.326 831.939

0.492 -0.012 275.529 -0.525 
os_10 -0.245 -0.423 16.597 28.411 

-1.542 0.844 -14.503 807.374

 
Table 5.3: System parameters and matrices for the wind-off case  

 

The system parameters are expected to be the same for any initial condition, because the 

properties of the system, such as the damping ratio, circular frequency should be independent 

of the initial condition. However, as seen in the Table 5.3 this not the case for the results of 

the experiments. The maximum difference between the circular frequencies, presented in the 

Table 5.3 is less than 2 % but for the decay rates, the difference is relatively high compared 

to the circular frequencies. The identification results of the system damping properties are 

less reliable than for the stiffness properties of the system.  

Furthermore, the mechanical damping and the mechanical stiffness matrices should be 

diagonal matrices. In other words, off-diagonal elements should be zero. Most of the off-

diagonal elements are very small compared to their corresponding diagonal elements except 

for some elements. Especially for the initial condition cases bs_10 and os_10, the element 

21C  is even greater than the diagonal elements. 21C  represents the effect of vertical motion 

on the rotational damping of the system. The differences in the initial vertical displacements 

of each initial condition case can be the reason for the discrepancy in the element 21C , which 

is affected by the vertical motion. As given in the Table 5.1, bs_20 has the highest initial 

vertical displacement and the element 21C  of bs_20 case has the smallest value among the 

other initial condition cases. On the other hand for the case os_10, the condition is 

completely opposite compared to the bs_20. Therefore, it can be interpreted that the quality 

of the mechanical system matrices increase with the application of higher initial vertical 

displacements, which also affect the length of the useful data. The second reason for these 

discrepancies can be the different length of useful data and the noise level of the data, both of 

which are different for each initial condition case.  
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Because of these discrepancies in the results of the mechanical system matrices, it is not 

possible to use the average of the three results as the mechanical system matrices of the 

general system in the calculation of flutter derivatives. Therefore, it is suggested to use each 

mechanical system matrices mechmech CandK with its corresponding effective system matrices 
effeff CandK . So that three sets of flutter derivatives are calculated for each initial condition 

case. That means any error made in the calculation of mechanical system matrices will also 

appear in the effective system matrices for the same initial condition. By this way the errors 

occurred in both matrices will be automatically eliminated, because the flutter derivatives are 

calculated by taking the difference between the mechanical and effective system matrices of 

each initial condition case.  

5.3.2 Extraction of Flutter Derivatives 

In order to define the aerodynamic behavior of the rectangular section model, all flutter 

derivatives are obtained from a two-degree of freedom motion under smooth wind flow with 

zero angle of incidence. As explained before, since the mechanical properties of each initial 

condition case is different from each other, three sets of flutter derivatives will be calculated 

by using the corresponding mechanical system parameters. The necessary parameters for the 

calculation of the flutter derivatives are presented in the Table 5.3 for each initial condition 

case. Also the following parameters are used in common for each set of flutter derivatives.     

 

m = 6.538 kg (mass of the total system) 

I = 0.1359 kg⋅m2 (mass moment of inertia of the total system) 

B = 0.3 m (width of the rectangular section model) 

ρ = 1.20 kg/m3 (standard air density at 20°, 1013.25 mbar and 50 % relative humidity)  

 

The flutter derivatives can be calculated after the calculation of mechanical and effective 

system matrices by the MITD method from free vibration response of the system with 

respect to the wind-off and wind-on cases, respectively. The flutter derivative terms, which 

form the loading term on the right side of the equation of motion at Eqn. 2.1, manifest 

themselves in the system matrices in order to set the right side of the equation of motion into 

zero. By this way, system identification method can be applied with respect to the free 

vibration response of the system. The equation of motion for free vibration is written as  

   0xKxCx =++ &&&                      ( 5.6 ) 
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where K = Ms
-1Ks and C = Ms

-1Cs 

According to the Eqn. 5.6, the effective damping and stiffness matrices can be formed as 
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As seen in the Eqns. 5.7 and 5.8, the flutter derivatives for any wind speed can be 

calculated by taking the difference between the effective system matrices, which are 

calculated with respect to the corresponding wind speed, and the mechanical system 

matrices. Both circular frequencies ωh and ωα are used in the calculation of flutter derivatives 

for the corresponding wind speed. 
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The same calculation procedure is applied to all wind speed case, which has sufficient 

length of data points to apply the system identification method. The length of useful data 

decreases with the increasing wind velocity. Because the higher the wind speed, the shorter 

will be the length of data. Especially, near the flutter onset wind velocity the aerodynamic 

damping of the vertical motion is very high, so that the vertical motion is damped faster and 

the useful vibration data is consequently shorter. Therefore, accuracy of the identified flutter 
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derivatives and system parameters decrease with the increasing wind velocity. In order to 

reduce the effect of this problem, Iwamoto [9] suggested using heavier section models 

having greater mass moment of inertia for the free vibration tests. Therefore, in order to get 

better results, the rectangular section model used in the experiments has relatively high mass 

and mass moment of inertia. 
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Figure 5.5a: Comparison of the vertical time histories Vave, VR, VL 
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Figure 5.5b: Comparison of the vertical time histories Vave, VF, VB 
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Figure 5.5c: Comparison of the vertical time histories Vave, VD1, VD2 
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      Figure 5.6: Vertical time histories at 3.84 m/s, 8.39 m/s, 12.46 m/s 
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Figure 5.7a: Curve fit with respect to the filtered measurement data 
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Figure 5.7b: Curve fit with respect to the measurement data without filtering 
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        Figure 5.8: Displacement time histories, h(t) and α(t) at Ut = 7.0 m/s 
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6  RESULTS AND DISCUSSION 

This chapter is devoted to present and interpret the results obtained from the wind tunnel 

tests of a rectangular section model with an aspect ratio of 1:8 under smooth wind flow with 

zero angle of incidence. The interpretation is done by comparing the free vibration test 

results with two sets of forced vibration test results, which provide the possibility to check 

the results of both techniques.  

6.1 Flutter Derivatives 

As explained in chapter five, flutter derivatives are determined from the results of the 

wind tunnel tests with the Reynolds number of 2.75×105. The maximum wind speed, which 

is used in the determination of the flutter derivatives, is about 1 m/s greater than the critical 

wind speed in order to observe the flutter effect on the system parameters providing 

sufficient length of useful data. The test, which is performed under the maximum wind 

speed, has enough length of displacement time history data for the application of the system 

identification method to identify the flutter derivatives. Although the torsional motion has a 

constant or growing oscillation time history at higher wind speeds, the length of useful data 

is determined with respect to the length of the h(t), which has a higher damping ratio.   

On the other hand at very high wind speeds greater than the flutter limit, there is a 

relatively big difference between the vertical and torsional oscillation data, which makes the 

instrumental matrices ΦΦ ˆand  defined in the Eqns. 3.9 and 3.10, singular and the system 

parameters cannot be identified any more.  Also, after a short time with the application of 

initial displacement, both vertical and torsional motion has growing oscillation time histories 

with the same circular frequencies at very high wind speeds greater than the flutter limit. 

Furthermore, the vertical motion has two different types of motion with different frequencies; 

after the initial displacement is given to the system, vertical motion first starts to decay with a 

lower frequency up to certain time, after then it grows continuously with a higher frequency, 

which is exactly the same with the frequency of torsional motion. Therefore it is not possible 

to identify the flutter derivatives with the MITD method at very high wind speeds, where 

both of the motions have the same circular frequency. 

As an example, the vertical and torsional displacement time histories of the wind tunnel 

test v11.5_10_01, which is performed under the wind speed much higher than the flutter 

limit, are presented in Fig. 6.2a. The frequencies of the both motion are calculated by the fast 

fourier transformation (fft) method and the results are presented in the Fig. 6.2b. As seen in 
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the Fig. 6.2a, after the application of initial displacement, oscillation of the torsional motion 

grows continuously with the torsional frequency of 4.21 Hz. However, at first the vertical 

motion has a decaying oscillation for 2 seconds with the frequency of 2.96 Hz, after then it 

starts to grow continuously with the frequency of 4.21 Hz, which is exactly the same as the 

torsional frequency. In the Fig. 6.2b, two peak points with different frequency values arise 

for the frequency analysis of the vertical motion. The smaller frequency represents the 

decaying oscillation, where the bigger one represents the growing oscillation.  

In section 5.2, it is proved that the effect of the vertical motion on the flutter derivatives 

associated with the torsional motion is very small and vice versa. So that these effects are 

neglected to overcome the uniqueness problem in the calculation of flutter derivatives. At the 

higher wind speeds greater than the flutter limit this assumption is no more valid, because the 

two motions cannot be separated between each other and they are not independent any more. 

Both the vertical and the torsional motion have a growing oscillation with the same 

frequency.  

6.1.1 Curve Fitting for Flutter Derivatives 

In order to improve the quality and the reliability of the flutter derivatives identification 

results, all the tests are performed 5 times for the same wind speed and initial condition. 

After the calculation of all the flutter derivatives with respect to the reduced wind velocity 

Ured=U/(B⋅f) for each test result, a least square method with an order of five is applied to fit a 

curve through the identification results, which will give the best result for the flutter 

derivatives. The least square technique uses all the data points to get the best fit for the flutter 

derivatives, which eliminates the obvious outliers throughout the distribution of the results 

represented by the points as seen in the Fig. 6.3 for the initial condition case bs_10. The 

effect of the useful time history length on the flutter derivatives results can be seen clearly in 

the Fig. 6.3. Since the useful length of the response data is getting shorter with the increasing 

reduced wind velocity, there is a large scatter of the results at the high reduced wind 

velocities around the stability border, especially for the flutter derivative A4
*. The reason for 

the scatter of the results is not only the limited length of response data but also the nature of 

the corresponding flutter derivative, which is hard to identify exactly. This phenomenon will 

be explained in the next section in detail.     
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6.2 Comparison of the Results 

Three sets of flutter derivatives are calculated for three different initial condition cases 

from the free vibration tests having the Reynolds number of 275.000. All these results will be 

compared with the forced vibration test results. The results of forced vibration tests can also 

contain some error, because they are also calculated from the experimental results. Therefore, 

two different forced vibration results are considered for the comparison of the free vibration 

test results, which provides the opportunity to check the forced vibration test results at the 

same time. 

The first set of forced vibration test results are obtained from the tests of Hortmanns [23], 

which have the Reynolds number of 100.000. The second set is obtained from the tests of 

Bergmann [22], which are carried out for the rectangular section model with the Reynolds 

number of 200.000. Bergmann test results are presented with three different initial 

displacement conditions, which are given to the section model separately for each motion. 

The three different initial vertical and torsional displacement amplitudes given to the section 

model are 2 mm, 4 mm, 8 mm and 2°, 5°, 8°, respectively. In order to make a consistent 

comparison between the different sets of results, all the flutter derivatives are converted to 

the current Scanlan notations [2] according to the Table 2.1. 

6.2.1 Comparison of the Flutter Derivatives 

The results of the free vibration tests for each initial condition and the forced vibration 

test results are presented in Appendix A, in the figures A.1 – A.12. The results of the flutter 

derivatives H3* and A3* are in good agreement for all cases. The flutter derivatives H1
* and 

A1
* of the initial conditions bs_10 and bs_20 match very well with the forced vibration 

results, which is not the case for the initial condition case os_10. This shows the weakness of 

the experimental results for the initial condition case os_10, not for the system identification 

method. However, the results of the flutter derivative H2
* for all initial condition case show 

the same discrepancy compared with the forced vibration test results, which can be a proof of 

the weakness of the system identification method in calculating the flutter derivative H2
*. In 

fact, at the low reduced wind velocities, H2
* results for each technique show good agreement. 

However, with increasing Ured, the discrepancy increases considerably between the results of 

free vibration and forced vibration tests. This discrepancy can be taken as under the 

acceptable limits compared to the discrepancies in the flutter derivatives H4
* and A4

*.  

Since the rectangular section model does not have a streamlined cross section, the 

torsional aerodynamic damping coefficient A2
* dominates the aeroelastic performance of the 
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section. As in the results of initial condition cases bs_10 and bs_20, A2
* exhibits sign change 

at a particular reduced wind velocity, which indicates the tendency of the section model to 

the torsional flutter. For the initial condition case os_10, after a certain reduced wind velocity 

A2
* exhibits an irregular distribution, which has a completely different behavior compared to 

the A2
* distributions of the other initial condition cases.  

On the other hand, there is an evident discrepancy in the A2
* results of the forced 

vibration test results. The free vibration test results of A2
* are in good agreement with the 

wind tunnel test results of Hortmanns [23], but there is big discrepancy with the results of 

forced vibration wind tunnel test results of Bergmann [22]. Almost the same results are 

obtained according to the numerical approach using the Computational Fluid Dynamics 

(CFD) by Thiesemann et al. [21]. The numerical results are in good agreement with the 

results of Hortmanns, but there is a considerable discrepancy between the numerical results 

and the results of Bergmann for the forced vibration tests. Therefore, the discrepancy in the 

forced vibration test results should be further investigated in order to make reliable 

comparisons.   

As seen in the figures in appendix A, there is a relatively high difference in the flutter 

derivatives H4
* and A4

* calculated with the free vibration test results and the forced vibration 

test results. The discrepancy in the flutter derivatives H4
* and A4

* is not only in between the 

free vibration test results for different initial condition cases, but there is also an obvious 

disagreement between the forced vibration test results, especially for the A4
*. As mentioned 

earlier, due to the high damping ratio of the vertical motion at the higher reduced wind 

speeds, the length of useful time history is very short, which makes the identification of 

flutter derivatives H4
* and A4

* difficult and inconsistent. The second reason for the 

disagreement is that, as given in the Eqn. 5.9, H4
* and A4

* are calculated by taking the 

difference between the effective and mechanical stiffness matrices 11K and 21K , 

respectively, which are directly related with the natural circular frequency of the vertical 

motion. As seen in the Fig. 6.5, the change in ωh is very small with the increasing reduced 

wind velocity. Therefore, the calculation of the flutter derivatives H4
* and A4

* is very 

sensitive to the noise level of the input data and even small errors in the identification of the 

corresponding stiffness matrices can result in big differences in H4
* and A4

*.  

In general the results show that, even for the high-reduced wind speeds, the free vibration 

test results and the forced vibration test results are in good  agreement in between except for 

the flutter derivatives H4
* and A4

*, which is also stated by Iwamoto [9], Sarkar [3]. 

Furthermore, it has been confirmed that the errors occur at the flutter derivatives H4
*, A4

* do 
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not affect the flutter behavior of the system so severely. Because of this reason these flutter 

derivatives are not presented in the original work of Scanlan and Tomko [10]. 

The results of flutter derivatives calculated by free vibration test results for the initial 

condition case bs_10, are proved to be the best results among the other initial condition cases 

by comparing the forced vibration test results in the figures Fig. A.1 - Fig. A.4. Also, bs_10 

results contain more flutter derivatives with different reduced wind speed values than the 

other initial condition cases. Therefore, the calculation of the critical wind speed and the 

other comparisons are done with respect to the results of initial condition case bs_10.    

6.2.2 Comparison of the Rectangular Section with the Flat Plate  

In chapter 2 the theoretical values of the flutter derivatives of a flat plate are calculated in 

terms of Theodorsen function. These theoretical results are compared with the results of the 

rectangular section model calculated by the system identification method from the free 

vibration test results for the initial condition case bs_10. The comparison provides the 

opportunity to find out similarities and discrepancies of the rectangular section to the plate-

like sections from the aerodynamic point of view. The streamlined cross sections used in the 

long-span bridge construction show almost the same aerodynamic behavior as the flat plate 

section, proved by Scanlan [2]. As seen in the Fig. 6.4, the discrepancy between the flutter 

derivatives of the flat plate and the rectangular section is relatively high. Especially, the 

discrepancy in the flutter derivative A2
* exhibits the main difference between aerodynamic 

behavior of the two sections. A2
* of the flat plate does not show any sign change like A2

* of 

the rectangular section and it stays on the negative side for all reduced wind speeds. 

Therefore the flat plate sections or namely streamlined sections do not show pure torsional 

flutter. On the contrary the rectangular section is prone to the torsinal flutter. Finally, it is 

interpreted that the theoretical calculations of the flutter derivatives are no more valid for the 

rectangular section with an aspect ratio of 1:8.       

6.2.3 Calculation of Critical Wind Speed 

Another way of inspection for the reliability of the MITD method and the analysis results 

is making a comparison between the measured critical wind speed during the wind tunnel 

tests and the theoretically calculated critical wind speed by using the identified flutter 

derivatives. The tunnel wind speed Ut is measured as 10.0 m/s at the stability border of the 

section model. The corresponding wind speed acting on the section model is calculated as 

13.857 m/s from the Fig. 4.7. As explained in section 2.3.1, the critical wind speed is 
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calculated by using the identified flutter derivatives according to the theoretical calculations 

derived by Starossek [1].  

The system parameters δh, δα, ωh, ωα are already calculated with the MITD method from 

the experimental results. In order to make a second comparison, the system parameters are 

obtained with respect to the theoretical calculations by using the identified flutter derivatives 

and the following mechanical system parameters for the initial condition case bs_10. 

 

λh = -0.1334, λα = -0.3236, ωh = 16.5995 [1/s], ωα = 28.9036 [1/s] ; (Table 5.3) 

   ξh = |λh/ωh| = 0.00804, ξα = |λα/ωα| = 0.0112; damping ratio-to-critical 

   gh = 2⋅ξh = 0.01608, gα = 2⋅ξα = 0.0224; damping coefficient, Starossek [1] 

ε = ωα/ωh = 1.7412; frequency ratio 

μ = 77.078; relative mass, Eqn. 2.22 

r = 0.957; reduced mass radius of gyration, Eqn. 2.22 

 

Flutter derivatives associated with torsinal and vertical motion has different Ured values. 

Therefore in the calculation of system parameters and critical wind speed, the flutter 

derivatives having the common Ured values are taken into account. 

In the Fig. 6.5, experimental values and calculated values of the system parameters are 

presented. Except for the vertical motion damping δh, both calculated and experimental 

values of the system parameters fit very well. Since the discrepancy in the δh results is not so 

severe, the difference in the results are accepted to be in the allowable range. Therefore, the 

reliability of the theoretical formulations is proved for the calculation of the system 

parameters by using the flutter derivatives.  

 The critical wind speed can be calculated with respect to the point where the calculated 

damping ratio of the torsional motion δα is equal to zero or namely at the stability border of 

the section model. According to the Fig. 6.5, the calculated δα curve crosses the zero ordinate 

at Ured = 10.483 and the corresponding torsional circular frequency is obtained as 27.319 1/s. 

The critical wind speed is calculated as 

 

Ucritical = Ured⋅B⋅fα = 10.483×0.3×(27.319/(2⋅π)) = 13.674 m/s 

 

The difference between the measured critical wind speed 13.857 m/s and calculated 

critical wind speed 13.674 m/s is 1.32 %. Both measured and calculated critical wind speed 
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values should be identical, because the critical wind speed is calculated by using the results 

of the measurement data. The small amount of difference, which is only due to numerical 

reasons, proves the applicability of the formulas used for the calculation of the critical wind 

speed.  

Moreover, the critical wind speed is calculated with respect to the forced vibration test 

results of Hortmanns and Bergmann by using the same procedure explained in section 2.3.1. 

The flutter derivatives for the forced vibration test results are available, whereas the 

mechanical system parameters are not provided. However, it should be pointed out that the 

mechanical properties of the system are independent of the technique used for the 

identification. In order to make a rough comparison, the system parameters that are obtained 

from the MITD method for the initial condition case bs_10, are used in the theoretical 

calculation of the critical wind speed by applying the flutter derivatives calculated from the 

forced vibration test results.   

Bergmann’s forced vibration test results are available for different initial condition cases. 

The initial condition case (α0=8° and h0=8 mm) is selected whose results show the best 

agreement with the free vibration test results.  

The system parameters obtained from the free vibration test results and the ones 

calculated by using the flutter derivatives determined from the forced vibration test results of 

Hortmanns and Bergmann are compared in the Fig. 6.6 and 6.7, respectively. The 

discrepancies between the related system parameters shown in the Fig. 6.6 and 6.7 are greater 

than the ones shown in the Fig. 6.5. 

The critical wind speed obtained from the experiments is compared with the critical wind 

speed obtained from the calculations by using the flutter derivatives identified from the free 

vibration test results and the forced vibration test results of Hortmanns and Bergmann. These 

results are presented in the Table 6.1 and the percentage difference is calculated with respect 

to the critical wind speed 13.857 m/s, measured from the wind tunnel tests. 

 

  Re Ured ωα [1/s] fα [Hz] Ucritical [m/s] Diff. [%] 

Free Vibration Tests 2,75×105 10,48 27,32 4,35 13,67 1,32 

Hortmanns 1,0×105 9,35 27,17 4,32 12,13 12,47 Forced 

Vibration 

Tests Bergmann 2,0×105 11,93 27,14 4,32 15,45 11,53 

 
        Table 6.1: Comparison of the critical wind speed of the rectangular section model   
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As seen in the Table 6.1, the difference for the free vibration test result is almost 

negligible, because the flutter derivatives are identified exactly from the present experiment. 

Although the flutter derivatives of the forced vibration tests are obtained from different 

experiments with different Reynolds numbers, the difference for both forced vibration test 

results are in the acceptable limits. 

6.2.4 Simplified Flutter Prediction 

For the non-streamlined bridge cross sections, a simplified flutter prediction method is 

developed by Starossek [1] to estimate the critical wind speed roughly. The simplified 

method results are in good agreement for the bluff sections, which are prone to the 

uncoupled, pure torsional flutter. The greatest advantage of the simplified method is the 

reduction in the calculation process, because only the flutter derivatives cαα
’’ (= 8/π⋅A2

* ) and 

cαα
’ (= 8/π⋅A3

* ) are required. The simplified method is applied to the rectangular section 

model in order to investigate the behavior of the model, whether it exhibits a pure torsional 

flutter or not. 

When the Eqn. 2.20 is arranged with respect to the uncoupled torsional motion, the 

following formulation is derived as  

 

)cr(μgc '
αα

2
α

''
αα +⋅=                       ( 6.1 )

  

The section reaches to the stability border and oscillates with a harmonic motion when 

the Eqn. 6.1 is in equilibrium. Then the critical wind speed is calculated according to the 

reduced wind velocity at the corresponding point. Therefore, the left and the right side of the 

Eqn. 6.1 are plotted with respect to the reduced wind velocity in the Fig 6.8 by using the 

mechanical system parameters and flutter derivatives identified from the free vibration test 

results for the initial condition bs_10. The intersection point of the two curves results in the 

reduced wind velocity, by which the critical wind speed can be calculated.  

As seen in the Fig. 6.8, the two curves do not intersect due to insufficient number of 

flutter derivatives, but they seem to intersect nearly at Ured = 12.0 which is greater than the 

theoretically calculated stability border Ured = 10.48, obtained in the Fig. 6.5. This result 

shows that the coupled motion flutter for the rectangular section is more critical than the pure 

torsional flutter. Therefore, it can be interpreted that, the rectangular section model (1:8) 
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behaves in between the streamlined and bluff cross sections from the aerodynamic point of 

view.   

6.2.5 Phase Shift (ϕα) and Amplitude Ratio (Rα)  

During the wind tunnel tests, at the flutter case the section model was observed to move 

around a particular point, which is at the windward side. The presence of phase shift between 

the two motions force the rotation axis of the section model move apart from the center of the 

model. It is obviously observed from the experiments that with the increasing wind speed, 

the location of the center of rotation of the section moves away from the center of the section 

to the windward direction.  

The phase shift and the amplitude ratio of the motions at the stability limit are calculated 

by using the system parameters and the flutter derivatives at the flutter case according to the 

Eqns. 2.31 and 2.32 as follows  

 Rα =1.9645 and ϕα = 0.3557 [radians] = 20.38° 

The phase shift and the amplitude ratio are represented in the Fig. 6.1. The two vectors α 

and h/b rotate in the complex plane with a constant angular velocity ω in counterclockwise 

direction with a constant amplitude ratio and phase shift.  

The location of the rotation axis T is simply calculated from geometry, in the Fig. 6.1 as  

cm
m

6.7
9645.1
15.0

R
1b

α~
/bh~b

α~tan
/bh~b

α~tan
h~z

α

===≅==  

The rotation axis lies 7.6 cm away from the center of the section model in the windward 

side for the flutter condition, which is already observed in the experiments. 

Im

Re
1

h/b

α

Rα

ϕα

α
wind

h
T

O

     
Figure 6.1: Normalized displacement vectors and the motion of the section model  
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         Figure 6.2a: h(t) and α(t) for Ut = 11.5 m/s greater than flutter limit 
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Figure 6.2b: Frequency analysis of the h(t) and α(t) for Ut = 11.5 m/s  
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Figure 6.3: Curve fit for the flutter derivatives of the initial condition case bs_10 
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      Figure 6.4: Flutter derivatives of the rectangular section (1:8) and the thin plate 
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 Figure 6.5: System parameters according to the free vibration test results  
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Figure 6.6: System parameters according to the results of Hortmanns 
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   Figure 6.7: System parameters according to the results of Bergmann 
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Figure 6.8: Simplified flutter prediction 
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7  CONCLUSION 

Prediction of the aerodynamic stability of a bridge deck is based on the flutter derivatives, 

which can be extracted from the section model wind tunnel tests. In most of the previous 

works, the emphasis is usually given to the direct flutter derivatives A2
* and A3

* for the bluff 

cross sections, which exhibit pure torsional flutter, as in the case of Tacoma Narrows bridge. 

However, today’s most of the long span bridges with streamlined sections exhibit coupled-

mode flutter. Therefore, all eight-flutter derivatives associated with vertical and torsional 

motions should be calculated to predict the aerodynamic stability of the bridge deck under 

wind loading.   

In the present work all eight flutter derivatives are identified simultaneously from the free 

vibration wind tunnel test results of a two-degree of freedom system under smooth wind flow 

with zero angle of attack. Different identification methods are investigated by comparing 

their advantages and disadvantages in the identifying of the system parameters. As an 

identification method, Modified Ibrahim Time Domain (MITD) is selected among the other 

methods because of its reliability in the identification of system parameters even from noise-

corrupted displacement time histories obtained from the section model wind tunnel tests. 

Therefore MITD method also works well under turbulent flow conditions. Because the 

buffeting forces caused by the turbulence are treated as additional noise in the response of the 

motion.  

Although the MITD method does not require any information for the initial displacement 

given to the section model, the identical initial displacement should be given to the model for 

each set of experiments in order to get consistent results of the identified parameters. 

Because the maximum amplitude of the oscillation plays a very important role in the 

identification of the flutter derivatives. 

 In order to evaluate aerodynamic behavior of a rectangular section with an aspect ratio of 

1:8, its flutter derivatives are calculated by MITD method from the free vibration wind tunnel 

test results for three different initial condition cases. The results are compared with the 

results of the flutter derivatives that are already obtained from two different forced vibration 

tests. Most of the flutter derivatives calculated with different techniques exhibit reasonable 

agreement. For some flutter derivatives, such as A2
*, the discrepancies not only exist between 

the different techniques, but also there exist discrepancies between the forced vibration test 

results. Therefore, free vibration test results provide the opportunity to compare forced 

vibration test results for A2
*, which is the most important flutter derivative for the rectangular 
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section. The discrepancies in the flutter derivatives A4
*, H4

* are independent of the selected 

method or technique because of the general problems in the identification of these 

derivatives.  

The comparison between the rectangular section and the flat plate confirms that the 

rectangular section behaves totally different with respect to the streamlined sections from the 

aerodynamic point of view. On the other hand, the results of the rectangular section model 

show that the coupled motion flutter is more critical than the pure torsional flutter, which is 

the case for bluff cross sections.  

The measured critical wind speed at the wind tunnel is compared with the one calculated 

by the flutter derivatives and the system parameters that are identified from the free vibration 

and the forced vibration test results. The difference between the measured and calculated 

critical wind speeds for each technique is in acceptable limits. As it was expected, the 

minimum difference is calculated with respect to the free vibration test results. Because the 

flutter derivatives are identified exactly from this test results, which is not the case for the 

forced vibration test results. 

The reliable results of the flutter derivatives obtained from the free vibration tests proves 

the applicability of the proposed approximate model, which is given in the Eqns. 5.4 and 5.5 

to solve the uniqueness problem in the identification of flutter derivatives. 

Finally, it is concluded that, the flutter derivatives obtained from the free vibration test 

results, can be used for the prediction of the aerodynamic stability of a section model, which 

provides an easy and effective way of stability prediction due to the simplicity of the free 

vibration tests. 
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Appendix A: Flutter Derivatives 
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     Figure A.1: Comparison of A2

* and A3
* of the initial condition case bs_10 
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Figure A.2: Comparison of H2

* and H3
* of the initial condition case bs_10   



 

    87

 

0 2 4 6 8 10 12 14 16 18
-25

-20

-15

-10

-5

0

H
1*

U/Bf

Free Vibration
Hortmanns
Bergmann-y2
Bergmann-y4
Bergmann-y8

0 2 4 6 8 10 12 14 16 18
-16

-14

-12

-10

-8

-6

-4

-2

0

2

H
4*

U/Bf

 
Figure A.3: Comparison of H1

* and H4
* of the initial condition case bs_10   
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Figure A.4: Comparison of A1
* and A4

* of the initial condition case bs_10  
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Figure A.5: Comparison of A2
* and A3

* of the initial condition case bs_20   
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Figure A.6: Comparison of H2

* and H3
* of the initial condition case bs_20    
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Figure A.7: Comparison of H1

* and H4
* of the initial condition case bs_20     
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Figure A.8: Comparison of A1

* and A4
* of the initial condition case bs_20      
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Figure A.9: Comparison of A2

* and A3
* of the initial condition case os_10       
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Figure A.10: Comparison of H2

* and H3
* of the initial condition case os_10         
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Figure A.11: Comparison of H1

* and H4
* of the initial condition case os_10           
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Figure A.12: Comparison of A1

* and A4
* of the initial condition case os_10            


