
2013.10.29.

1

6. Gas dynamics

Dr. Gergely Kristóf

Dept. of Fluid Mechanics, BME

February, 2009.

Speed of infinitesimal disturbances in 

still gas
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In steal ~5000 m/s
In water ~1500 m/s

In air ~340 m/s
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Momentum 
theorem:

Allievi theorem

Ideal gases

We also assume that the specific heats are constant.
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Ratio of specific heats: eg. for all diatomic gases:
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The speed of sound in ideal 

gases

const.=
γρ

p

We assume isentropic compression, which is very fast 
and the effect of the friction is negligible, thus:

( )const.lnlnpln =− ργ
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Eg. for air:

at 0°C:   a=331 m/s

at 20°C: a=343 m/s
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Nonlinear wave propagation
What if we generate another small disturbance?

dv2 2v adv

av >2 because:

- The second wave propagates in a gas flow of dv velocity.
- The second wave propagates in a gas flow having a higher
speed of sound: p↑  → T↑  →  a↑ .

The second wave will catch up to the first wave.

Shock waves
• Treated as a discontinuity 

(finite jump) of the state variables 
(p, ρ, T and a).

• Propagates faster than the small 
disturbances. (Only shock waves 
can do so.)

• Deceleration of supersonic flows 
are generally caused by shock 
waves.

• It is a dissipative process. 
(Causes head losses.)

A compression wave is 
steepening, and finally it 

becomes a shock wave:

Expansion waves 
behave in the opposite 

way:
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Analogy
Waves breaking in shallow water

Analogy
Hydraulic jump in a sink

Resonance in a closed pipe
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Crank angle φ [rad]

Pipe length:

6.05 m

Diameter:

36 mm

Piston displacement:

50 cm3.

At 29 Hz we measured:

p

φ
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Propagation of small disturbances in 

subsonic and in supersonic flow
Positions of an object having velocity v at time instants 0,-1,-2 and -3 
seconds and also showing the wave fronts started in those instants:

v=0 v<a

v>av=a

subsonic

supersonic

Application
Schlieren image of a gun fire

[http://www.phschool.com/science/science_news/articles/revealing_covert_actions.html]

Mach cone
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Problem #6.1

[An album of fluid motion]

Estimate the Mach number on the basis of the 
shadowgram below:

Spherical projectile To the solution

Analogy
Cerenkov radiation

Variable cross-section channel (1)

gas flow
x

A, v, p and ρ
depend only on x

0=++
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v
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A
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Continuity:
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Variable cross-section channel (2)

( )
A

dA

v

dv
M =−12

Acceleration Deceleration

Subsonic    M<1 Convergent Divergent

Supersonic M>1 Divergent Convergent

If M=1 then dA=0: the area has an extreme value (minimum).

M>1M<1 M=1gas flow

Laval nozzle

p

x

pt

pt

pex

supersonic flow

trans-sonic flow

with a normal shock

subsonic flow

Supersonic jets

p-
p+ p+p- p-

p+ p+p- p- p-

[An Album of Fluid 

Motion, 168]

M=1.8

Over-expanded:

Under-expanded:
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Energy equation (1)
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For steady state:
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Denoting the mass weighted 
average of the stagnation 

(total) enthalpy in cross-
sections 1 and 2 by ht,1 and ht,2 ,

it reads:

( ) WQqhh m,t,t +=− 12

Energy equation (2)

12 ,t,t hh =

1

2thin stream
tube

The stream tube can be 
regarded as a moving wall.

We apply the energy 

equation for steady flow 
under the following 
assumptions:

-the stream tube is thermally 
isolated (Q=0);

-the shear stress is 0 over 
the stream tube (W=0).

We obtain:

Isentropic flow (1)
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Isentropic flow (2)
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Isentropic flow (3)

Reference states

pt p→0
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Isentropic flow (5)
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We can express temperature T as a function of M:
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Isentropic flow (6)
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Local pressure and density can be expressed in terms of 
the Mach number through the isentropic relations:
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The critical ratios (for the state of M=1):
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For γγγγ=1.4: 0.83 0.53 0.63
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Isentropic flow (8)
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Isentropic flow (9)
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The inverse of the above 
function also gives the 

Mach number for a given 
A/A* .
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Problem #6.3

a) What is the optimum Aout/A* ratio of 
the nozzle of a rocket thruster 

designed for near ground flight, if the 
chamber pressure pt=10 barA , and 

γγγγ=1.3. Please, use the gas tables!

b) Calculate the mass flow-rate for 

Tt=1300 K a, R=462 J/kg-K and 
Aout=20 cm2!

c) Please, calculate the thrust!

pt

AoutA*

To the solution

known functions

of M. E.g:
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Thrust function
The momentum theorem for a variable cross-section steady 
channel flow reads:
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Normal shock waves (1)

2v 1v
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A steady flow
is observed!
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+Energy equation:

4 unknowns.
We can eliminate

one by using:
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Normal shock waves (2)
Mach number was the key to isentropic flows ... 

... we should try to solve this problem for M2(M1).
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Normal shock waves (3)
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It is a quadratic formula for
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We can arrange it into the polynomial form:

Normal shock waves (4)
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This branch belongs to an expansion shock.
Is it valid?
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Normal shock waves (5)
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Normal shock waves (6)
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Problem #6.4

There is a strong stationary normal 
shock in a divergent channel at the 
cross-section characterized by Aw. 

Ain

Aout
Aw

1 2

41.=γ 2=inM

Ain kPap 100= KTin 270=

3=inout A/A2=inw A/A

a) Calculate the Mach number at the
outlet (Mout)!

b) Please, determine the outlet 
pressure (pout)!

To the solution


