6. Gas dynamics

Dr. Gergely Kristóf Dept. of Fluid Mechanics, BME February, 2009.

The speed of sound in ideal gases

We assume isentropic compression, which is very fast and the effect of the friction is negligible, thus:

$$\frac{p}{\rho^{\gamma}} = \text{const.}$$

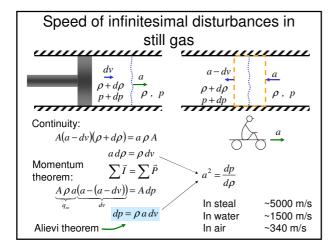
$$\ln p - \gamma \ln \rho = \ln(\text{const.})$$

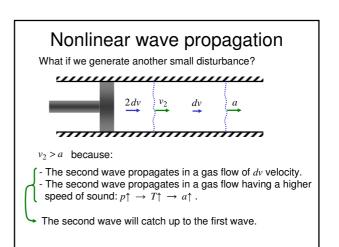
$$\frac{dp}{p} - \gamma \frac{d\rho}{\rho} = 0$$

$$\frac{dp}{d\rho} = \gamma \frac{p}{\rho} = \gamma RT$$

$$a = \sqrt{\gamma RT}$$

Eg. for air: at 0 °C: a=331 m/s at 20°C: a=343 m/s





Ideal gases

Equation of state:

 $\frac{p}{-} = RT$

We also assume that the specific heats are constant.

Internal energy:

 $u = c_v T$

Enthalpy: $h = u + \frac{p}{\rho} = c_p T$

Specific gas constant: $R = c_p - c_v = \frac{R_u}{M}$; $R_{air} = \frac{8314}{29} = 287 \left[\frac{J}{kg \, K} \right]$

Ratio of specific heats: $\gamma = \frac{c_p}{c_v}$

eg. for all diatomic gases:

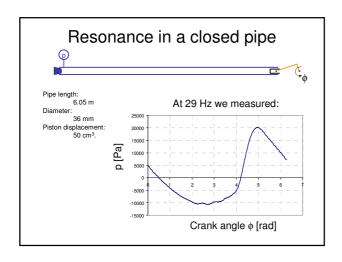
 $\gamma = 1.4$

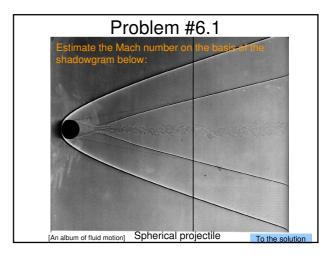
Shock waves

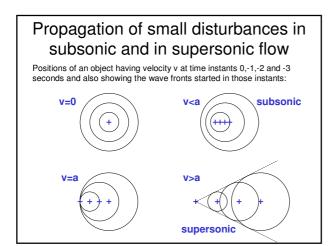
A compression wave is steepening, and finally it becomes a shock wave:

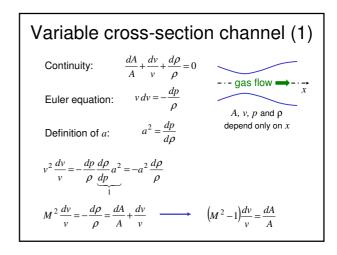
Expansion waves behave in the opposite way:

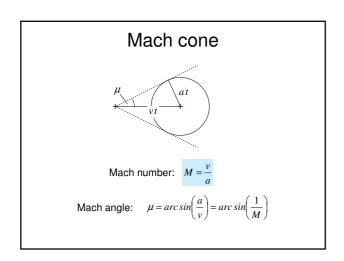
- Treated as a discontinuity (finite jump) of the state variables $(p, \rho, T \text{ and } a)$.
- Propagates faster than the small disturbances. (Only shock waves can do so.)
- Deceleration of supersonic flows are generally caused by shock waves.
- It is a dissipative process. (Causes head losses.)

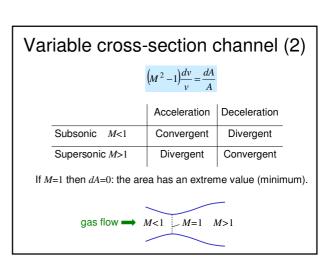






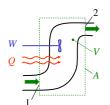






Energy equation (1)

$$\frac{\partial}{\partial t}\int\limits_V (u+\frac{v^2}{2})\rho\,dV + \oint\limits_A (u+\frac{v^2}{2})\rho\,\vec{v}\,d\vec{A} = Q + W - \oint\limits_A \rho\,\vec{v}\,d\vec{A}$$



For steady state:
$$\oint_A (h + \frac{v^2}{2}) \rho \, \vec{v} \, d\vec{A} = Q + W$$

Denoting the mass weighted average of the stagnation (total) enthalpy in crosssections 1 and 2 by $h_{\rm t,I}$ and $h_{\rm t,2}$,

$$(h_{t,2} - h_{t,1})q_m = Q + W$$

Isentropic flow (2)

$$\frac{dT}{T} = (\gamma - 1)\frac{d\rho}{\rho}$$

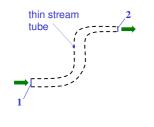
$$\frac{dp}{p} = \frac{d\rho}{\rho} + \frac{dT}{T}$$

$$\frac{dT}{T} = (\gamma - 1) \left[\frac{dp}{p} - \frac{dT}{T} \right]$$

$$\gamma \frac{dT}{T} = (\gamma - 1) \frac{dp}{p}$$

$$\frac{T_2}{T_1} = \left(\frac{p_2}{p_1}\right)^{\frac{\gamma - 1}{\gamma}}$$

Energy equation (2)



The stream tube can be regarded as a moving wall.

We apply the energy equation for steady flow under the following assumptions:

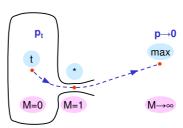
- -the stream tube is thermally isolated (Q=0);
- -the shear stress is 0 over the stream tube (W=0).

We obtain:

 $h_{t,2} = h_{t,1}$

Isentropic flow (3)

Reference states



Isentropic flow (1)

I. law of thermodynamics: $T ds = du + p d(\rho^{-1})$

 $T ds = c_v dT - \frac{p}{\rho^2} d\rho = c_v dT - RT \frac{d\rho}{\rho}$ for an ideal gas:

 $c_v \frac{dT}{T} = R \frac{d\rho}{\rho}$ for isentropic flow:

 $\frac{R}{c_v} = \frac{c_p - c_v}{c_v} = \gamma - 1$

 $\frac{T_2}{T_1} = \left(\frac{\rho_2}{\rho_1}\right)^{\gamma - 1} \qquad \frac{dT}{T} = (\gamma - 1)\frac{d\rho}{\rho}$

Isentropic flow (4)

By applying the energy equation to a stream line we obtain:

$$h_t = h + \frac{v^2}{2} = \text{constant}$$

(It is in analogy with the Bernoulli principle.)

Relations between the reference quantities:

$$M = 0 \qquad M = 1 \qquad M = \infty$$

$$\downarrow \qquad \qquad \downarrow$$

$$h_t = h_* + \frac{v_*^2}{2} = \frac{v_{max}^2}{2}$$

Isentropic flow (5)

We can express temperature T as a function of M:

$$h_t = h + \frac{v^2}{2}$$

$$c_p T_t = c_p T + \frac{v^2}{2}$$

$$a^2 = \gamma R T = \gamma c_p \left(1 - \frac{1}{\gamma}\right) T = (\gamma - 1) c_p T$$

$$\frac{a_t^2}{\gamma - 1} = \frac{a^2}{\gamma - 1} + \frac{v^2}{2}$$

$$\frac{a_t^2}{a_t^2} = \frac{T_t}{T} = 1 + \frac{\gamma - 1}{2} M^2$$

Isentropic flow (8)

Mass flow-rate:
$$q_m = \rho v A = \frac{\rho}{\rho_t} \rho_t M \frac{a}{a_t} a_t A$$

$$q_m = M \left(1 + \frac{\gamma - 1}{2} M^2 \right)^{-\left(\frac{1}{\gamma - 1} + \frac{1}{2}\right)} \rho_t a_t A$$

$$\frac{1}{\gamma - 1} + \frac{1}{2} = \frac{2 + \gamma - 1}{2(\gamma - 1)} = \frac{1}{2} \frac{\gamma + 1}{\gamma - 1}$$

$$q_m = M \left(1 + \frac{\gamma - 1}{2} M^2 \right)^{-\frac{1}{2} \frac{\gamma + 1}{\gamma - 1}} \rho_t a_t A$$

$$q_m = \left(1 + \frac{\gamma - 1}{2} \right)^{-\frac{1}{2} \frac{\gamma + 1}{\gamma - 1}} \rho_t a_t A_* \xrightarrow{A_*} A_* = f(M)$$

Isentropic flow (6)

Local pressure and density can be expressed in terms of the Mach number through the isentropic relations:

$$\frac{p_t}{p} = \left(\frac{T_t}{T}\right)^{\frac{\gamma}{\gamma - 1}} = \left(1 + \frac{\gamma - 1}{2}M^2\right)^{\frac{\gamma}{\gamma - 1}}$$
$$\frac{\rho_t}{\rho} = \left(\frac{T_t}{T}\right)^{\frac{1}{\gamma - 1}} = \left(1 + \frac{\gamma - 1}{2}M^2\right)^{\frac{1}{\gamma - 1}}$$

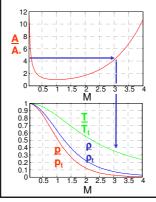
The critical ratios (for the state of M=1):

$$\frac{T_*}{T_t} = \frac{2}{\gamma + 1} \qquad \frac{p_*}{p_t} = \left(\frac{2}{\gamma + 1}\right)^{\frac{\gamma}{\gamma - 1}} \qquad \frac{\rho_*}{\rho_t} = \left(\frac{2}{\gamma + 1}\right)^{\frac{1}{\gamma - 1}}$$

0.63

For γ =1.4: 0.83 0.53

Isentropic flow (9)



$$\frac{A}{A_*} = \frac{M^{-1} \left(1 + \frac{\gamma - 1}{2} M^2\right)^{\frac{1}{2} \frac{\gamma + 1}{\gamma - 1}}}{\left(1 + \frac{\gamma - 1}{2}\right)^{\frac{1}{2} \frac{\gamma + 1}{\gamma - 1}}}$$

The inverse of the above function also gives the Mach number for a given A/A. .

Problem #6.2

Please, calculate the maximum velocity for isentropic flow if γ =1.4, R=287 J/kg-K and T_i=1000 K are given!

To the solution

Problem #6.3

a) What is the optimum A_{out}/A . ratio of the nozzle of a rocket thruster designed for near ground flight, if the chamber pressure $p_t=10$ bar_A, and $\gamma=1.3$. Please, use the gas tables!

b) Calculate the mass flow-rate for T_t =1300 K a, R=462 J/kg-K and A_{out} =20 cm²!

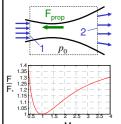
c) Please, calculate the thrust!

To the solution

Thrust function

The momentum theorem for a variable cross-section steady channel flow reads:

$$F_{prop} = F_2 - F_1 = (p_2 + \rho_2 v_2^2) A_2 - (p_1 + \rho_1 v_1^2) A_1 + p_0 (A_1 - A_2)$$



$$F = (p + \rho v^2)A$$

$$\frac{F}{F_*} = \frac{p + \rho v^2}{p_* + \rho_* v_*^2} \frac{A}{A_*} = \frac{p}{p_*} \frac{1 + \gamma M^2}{1 + \gamma} \frac{A}{A_*}$$

$$\frac{p}{p_*} = \frac{p_t}{p_*} \frac{p}{p_t} = \left(\frac{\gamma + 1}{2}\right)^{\frac{\gamma}{\gamma - 1}} / \left(1 + \frac{\gamma - 1}{2}M^2\right)^{\frac{\gamma}{\gamma - 1}}$$

Normal shock waves (3)

(a) (b) (c)
$$\frac{p_1}{RT_1} M_1 (\gamma R T_1)^{1/2} = \dots \qquad p_1 \left(1 + \gamma M_1^2 \right) = \dots \qquad T_1 \left(1 + \frac{\gamma - 1}{2} M_1^2 \right) = \dots$$

$$\mathbf{a}^{*}\mathbf{b}^{-1*}\mathbf{c}^{0.5} \qquad \frac{M_{1}}{1+\gamma M_{1}^{2}} \sqrt{1+\frac{\gamma-1}{2}M_{1}^{2}} = \frac{M_{2}}{1+\gamma M_{2}^{2}} \sqrt{1+\frac{\gamma-1}{2}M_{2}^{2}}$$

$$M_1^2 \left(1 + \frac{\gamma - 1}{2} M_1^2\right) \left(1 + \gamma M_2^2\right)^2 = M_2^2 \left(1 + \frac{\gamma - 1}{2} M_2^2\right) \left(1 + \gamma M_1^2\right)^2$$

It is a quadratic formula for M_2^2

We can arrange it into the polynomial form:

$$M_2^4(...)+M_2^2(...)+(...)=0$$

Normal shock waves (1)

.....

4 unknowns.
$$p_2, \rho_2, T_2$$
 p_1, ρ_1, T_1 We can eliminate one by using:

 $\frac{p_2}{\rho_2} = RT_2$

Continuity:

$$v_1 \rho_1 A = v_2 \rho_2 A$$

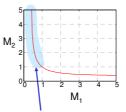
Momentum low:

$$(p_1 + \rho_1 v_1^2)A = (p_2 + \rho_2 v_2^2)A$$

Energy equation:

$$\left(c_p T_1 + \frac{v_1^2}{2}\right) \rho_1 v_1 A = \left(c_p T_2 + \frac{v_2^2}{2}\right) \rho_2 v_2 A$$

Normal shock waves (4)



$$M_2^2 = \frac{M_1^2 + \frac{2}{\gamma - 1}}{\frac{2\gamma}{\gamma - 1}M_1^2 - 1}$$

This branch belongs to an expansion shock. Is it valid?

Normal shock waves (2)

Mach number was the key to isentropic flows we should try to solve this problem for $M_2(M_1)$.

$$\rho_1 v_1 = ...$$

$$\frac{p_1}{RT}M_1(\gamma RT_1)^{1/2} = ...$$

$$p_1 + \rho_1 v_1^2 = \dots \longrightarrow p_1 \left(1 + \frac{\rho_1 v_1^2}{p_1} \right) = \dots \longrightarrow p_1 \left(1 + \gamma \frac{v_1^2}{a_1^2} \right) = \dots$$

$$p_1 \left(1 + \gamma M_1^2 \right) = \dots$$

$$p_1(1+\gamma M_1^2)=...$$

$$c_p T_1 + \frac{v_1^2}{2} = \dots \longrightarrow T_1 \left(1 + \frac{\gamma R v_1^2}{2 c_p a_1^2} \right) = \dots \longrightarrow T_1 \left(1 + \frac{\gamma - 1}{2} M_1^2 \right) = \dots$$

Normal shock waves (5)

Pressure ratio:

(b)
$$\longrightarrow \frac{p_2}{p_1} = \frac{1 + \gamma M_1^2}{1 + \gamma M_2^2} = f(M_1)$$

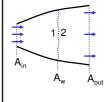
Temperature ratio: (c)
$$\longrightarrow \frac{T_2}{T_1} = \frac{1 + \frac{\gamma - 1}{2} M_1^2}{1 + \frac{\gamma - 1}{2} M_2^2} = g(M_1)$$

$$\frac{\rho_2}{\rho_1} = \frac{p_2}{p_1} \left(\frac{T_2}{T_1}\right)^{-1} = h(M_1)$$

Normal shock waves (6)

$$\frac{2}{1} = \frac{\frac{p_2}{p_1}}{\frac{p_1}{p_1}} \frac{p_2}{p_1} = \frac{\frac{1}{T_2}}{\frac{y_1}{T_1}} \frac{p_2}{p_1} = \frac{1}{T_2} \frac{p_2}{p_1} = \frac{1}{T_2} \frac{p_2}{p_1} = \frac{1}{T_2} \frac{p_2}{p_1} \frac{p_2}{p_1} = \frac{1}{T_2} \frac{p_2}{p_1} \frac{p_2}{p_1} = \frac{1}{T_2} \frac{p_2}{p_1} \frac{p_2}{p_1$$

Problem #6.4



There is a strong stationary normal shock in a divergent channel at the cross-section characterized by $A_{\rm w}$.

$$=1.4$$
 $M_{in}=2$

$$p_{in} = 100 \, kPa_A \qquad \qquad T_{in} = 270 \, K$$

$$A_w / A_{in} = 2 \qquad A_{out} / A_{in} = 3$$

- a) Calculate the Mach number at the outlet $(M_{out})!$
- b) Please, determine the outlet pressure $(p_{out})!$

To the solution

The entropy production

The entropy change can be related to pressure and temperature ratios:

$$Tds = dh - \frac{dp}{\rho} = c_p dT - RT \frac{dp}{p}$$

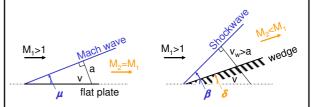
$$\frac{s_2 - s_1}{R} = \frac{\gamma}{\gamma - 1} \ln \frac{T_2}{T_1} - \ln \frac{p_2}{p_1}$$

Generally we can state:

$$e^{\frac{s_2-s_1}{R}} = \left(\frac{T_2}{T}\right)^{\frac{\gamma}{\gamma-1}} \frac{p_1}{p_2} \longrightarrow$$

An expansion shock wave would lead to a decrease of entropy, therefore it does not exist.

Oblique shockwaves (1)



- Flow direction is changed by δ angle.
- In still medium, shockwaves propagate faster than the speed of sound, therefore: β>μ
 - M₂ can be > 1 for an oblique shock.

Rankine-Hugoniot relations

Change of the thermodynamical state

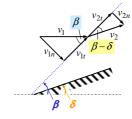
$$\frac{T_2}{T_1}\Big|_{shock} = \frac{\rho_1}{\rho_2}\Big|_{shock} \\
\frac{\rho_1}{T_1}\Big|_{isent} = \frac{\rho_1}{\rho_2}\Big|_{isent}$$

$$\frac{1.4}{1.35} \\
1.3 \\
1.2 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\
1.15 \\$$

Weak shocks are almost isentropic.

 \dots but they still propagate much faster than a.

Oblique shockwaves (2)



$$v_{1n} = v_1 \sin \beta$$

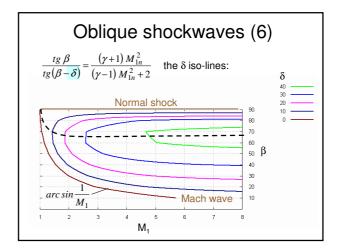
$$v_{1t} = v_1 \cos \beta$$

$$v_{2n} = v_2 \sin(\beta - \delta)$$

$$v_{2t} = v_2 \cos(\beta - \delta)$$

Control volume $\rho_{1}v_{1n} = \rho_{1}v_{1n}$ $\rho_{1}v_{1n}(v_{1n} - v_{2n}) = p_{2} - p_{1}$ $\rho_{1}v_{1n}(v_{1t} - v_{2t}) = 0 \longrightarrow v_{1t} = v_{2t}$ $h_{1} + \frac{1}{2}(v_{1n}^{2} + v_{1t}^{2}) = h_{2} + \frac{1}{2}(v_{2n}^{2} + v_{2t}^{2})$ Same formulae are used for normal shocks! $\rho_{1}v_{1n} = \rho_{2}v_{2n}$ $p_{1} + \rho_{1}v_{1n}^{2} = p_{2} + \rho_{2}v_{2n}^{2}$

 $h_1 + \frac{v_{1n}^2}{2} = h_2 + \frac{v_{2n}^2}{2}$



Oblique shockwaves (4)

We take the normal components of the Mach numbers:

$$M_{1n} = M_1 \sin \beta$$
 $M_{2n} = M_2 \sin (\beta - \delta)$

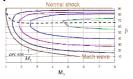
The static flow quantities can be calculated by using the gas tables developed for normal shocks:

$$M_{2n}^2 = \frac{M_{1n}^2 + \frac{2}{\gamma - 1}}{\frac{2\gamma}{\gamma - 1}M_{1n}^2 - 1}$$

$$\frac{p_2}{p_1} = f(M_{1n})$$
 $\frac{T_2}{T_1} = g(M_{1n})$ $\frac{\rho_2}{\rho_1} = h(M_{1n})$

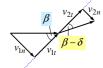
But the angle β is still unknown!

Oblique shockwaves (7)



- Above a minimum Mach number M_{min} two β angles exist for a given δ . $(\beta_{strong} > \beta_{weak})$ Only the weak wave can be observed in external flows. (The strong wave can only be produced in wind tunnels.)
- M_{min} depends on $\delta.$ Bellow M_{min} , no oblique shock is possible. A detached bow wave is formed.
- We can also define a maximum angle δ_{max} , above which no oblique shockwave can exist for a given Mach number.

Oblique shockwaves (5)



$$tg \beta = \frac{v_{1n}}{v_{1t}}$$
 $tg (\beta - \delta) = \frac{v_{2n}}{v_{2t}}$

 $v_{1t} = v_{2t}$

density ratio for a

$$\frac{tg \beta}{tg (\beta - \delta)} = \frac{v_{1n} v_{2t}}{v_{2n} v_{1t}} = \frac{\rho_2}{\rho_1} = \frac{(\gamma + 1) M_1^2 \sin^2 \beta}{(\gamma - 1) M_1^2 \sin^2 \beta + 2}$$

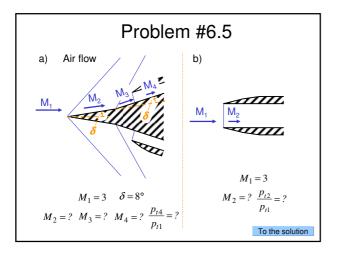
Now, we can plot β against M_1 for given values of δ .

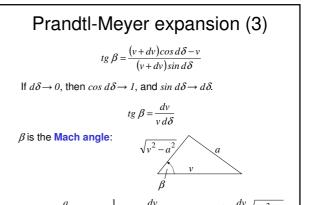
Oblique shockwaves (8)

M=constant

"streamlined body" "bluff body"

Eg. if we increase the thickness of the wing the bow shock can be detached, the flow goes through a normal shock, therefore a we can expect a much higher pressure close to the leading edge.





Prandtl-Meyer expansion (1) Compression + deceleration Expansion + acceleration

Change of flow direction in supersonic flow (at least in isentropic cases) is directly linked to acceleration and deceleration.

We assume an isentropic process; thus we limit the analyses to expansion and to elementary compression cases.

Prandtl-Meyer expansion (4) We can express dv/v in terms of the Mach number:

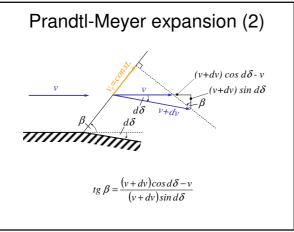
$$\frac{dv}{v} = \frac{dM}{M} + \frac{1}{2} \frac{dT}{T}$$

$$\frac{T_t}{T} = 1 + \frac{\gamma - 1}{2} M^2 \quad \text{in which} \quad T_t = \text{constant}$$

$$-\frac{T_t}{T^2} dT = (\gamma - 1) M dM$$

$$\frac{dT}{T} = -\frac{(\gamma - 1) M^2}{1 + \frac{\gamma - 1}{2} M^2} \frac{dM}{M}$$

$$\frac{dv}{v} = \frac{1 + \frac{\gamma - 1}{2} M^2 - \frac{\gamma - 1}{2} M^2}{1 + \frac{\gamma - 1}{2} M^2} \frac{dM}{M} = \frac{1}{1 + \frac{\gamma - 1}{2} M^2} \frac{dM}{M}$$



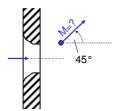
Prandtl-Meyer expansion (5) $d\delta = \frac{dv}{v} \sqrt{M^2 - 1} \qquad \frac{dv}{v} = \frac{1}{1 + \frac{\gamma - 1}{2} M^2} \frac{dM}{M}$

$$d\delta = \frac{\sqrt{M^2 - 1}}{1 + \frac{\gamma - 1}{2}M^2} \frac{dM}{M} \longrightarrow \delta = \int_1^M \frac{\sqrt{M^2 - 1}}{1 + \frac{\gamma - 1}{2}M^2} \frac{dM}{M}$$

This integral is the Prandtl-Meyer expansion function:

$$\delta = \sqrt{\frac{\gamma+1}{\gamma-1}} atg\left(\sqrt{\frac{\gamma-1}{\gamma+1}} \left(M^2-1\right)\right) - atg\left(\sqrt{M^2-1}\right)$$

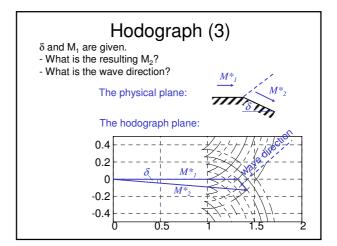
Problem #6.6



There is a high speed air flow through a convergent nozzle. Downstream from the nozzle, at a given point, the flow direction is 45° with respect to

What is the Mach number at this point?

To the solution



Hodograph (1)

Inconveniences:

- 1) the length of the M vector $\rightarrow \infty$ with increasing δ angle
- 2) the length is not proportional to the velocity.

Therefore we will use $M^*=v/a^*$ instead of M=v/a:

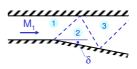
$$M^{*2} = \frac{v^2}{a^{*2}} = \frac{v^2}{a^2} \frac{a^2}{a^{*2}} = M^2 \frac{T}{T^*} = M^2 \frac{T}{T_t} \frac{T_t}{T^*}$$

$$M^{*2} = M^{2} \left(1 + \frac{\gamma - 1}{2} M^{2}\right)^{-1} \frac{\gamma + 1}{2}$$

$$M^{*2} = \frac{(\gamma + 1)M^2}{2 + (\gamma - 1)M^2}$$
 and $M^2 = \frac{2M^{*2}}{\gamma + 1 - (\gamma - 1)M^{*2}}$

Problem #6.7

Please, solve graphically the double reflection problem below. $M_1=1.28, \delta=5^{\circ}$.



Determine M2, M3 and the wave directions!

To the solution

Hodograph (2)

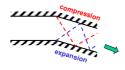
$$d\delta = \frac{dv}{v} \sqrt{M^2 - 1}$$

$$d\delta = \frac{dv}{v} \sqrt{M^2 - 1} \qquad M^2 = \frac{2M^{*2}}{\gamma + 1 - (\gamma - 1)M^{*2}}$$

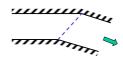
$$d\delta = \frac{dM^*}{M^*} \sqrt{\frac{M^{*2} - 1}{1 - \frac{\gamma - 1}{\gamma + 1}M^{*2}}}$$

The integral of $d\delta$ leads to the formula of an epicycloid.

Redirection of a channel flow



Fluctuating pressure with increased dissipation.



No reflected wave. (Only one expansion wave.)

