MOVING GLASS SHEET

1. TECHNICAL DESCRIPTION, BACKGROUND

A piece of glass was cut and then tipped over onto a table during the manufacturing process. Once on the table, the glass was moved with the help of suction cups.

2. PHENOMENON

- The glass does not break when it hits the table.
- For a certain period of time, the glass can be moved across the table with a small amount of force. (Ideal Case)

3. FIND THE REASON

- Why does the glass not break?
- Why can the glass be moved across the table with a small amount of force?

4. ENGINEERING CALCULATIONS

A/ Consider the piece of glass and the table as infinitely large surfaces. The problem should also be considered as one-dimensional, with movement only occurring at a constant speed, and only in the x direction (see Figure 1), with the pressure gradient in the fluid $=0$. Calculate the force required to move a $1\left[m^{\wedge} 2\right]$ piece of glass.

$$
F=?[N]
$$

Figure 1.
Data:
Size of glass sheet $A=1$ [$\left.m^{\wedge} 2\right]$
Constant speed of movement $u=2[\mathrm{~m} / \mathrm{s}]$
Mean clearance between the glass and the table $H=0.5$ [mm]
Properties of air: $M=29[\mathrm{~kg} / \mathrm{mol}], T=293.15[\mathrm{~K}], p=1[\mathrm{bar}]=10^{\wedge} 5[\mathrm{pa}], v=1.51 \mathrm{E}-5[\mathrm{~m} \wedge 2 / \mathrm{s}]$

