## **HEAT EXCHANGER**

## 1. TECHNICAL DESCRIPTION, BACKGROUND

The air which is entering a furnace is preheated. The velocity of this air is too great when it enters the furnace though and therefore something needs to be done in order to reduce it.

## 2. PROCEDURE

- The velocity of the air is too great, and therefore something needs to be done in order to slow down the velocity. What should be done? (Add a diffuser at the end of the pipe)
- If the diffuser given below is used, what is the average velocity of the air at the outlet of the diffuser?

## 3. ENGINEERING CALCULATIONS

- A/ Calculate the mass flow rate at the outlet of the diffuser.
- B/ Calculate the average velocity at the outlet of the diffuser.

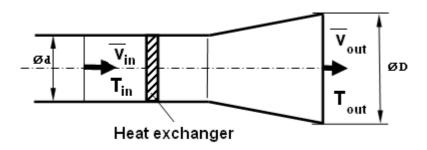



Figure 1.

Fluid Data:

Gas constant of air R = 287 [J/(kg K)]

The pressure in the system is approximately constant  $p = 10^5 [Pa]$ 

Inlet Data:

Inlet temperature  $T_{in} = 300 [K]$ 

Inlet diameter d = 315 [mm]

Inlet average velocity  $\overline{v}_{in} = 12 \left[ \frac{m}{s} \right]$ 

Outlet Data:

Outlet temperature  $T_{out} = 340 [K]$ 

Outlet diameter D = 600 [mm]