As shown in the image, a lake is connected to a reservoir through a pipe. There is no pressure loss at the inlet of the pipe due to its streamlined design. The diameter $d$ of the pipe is constant all throughout the pipe. The pipe has a tap valve at the top in case the flow needs to be stopped. According to a requirement, the water needs to be transported to the lake by a volumetric flow rate $q_{v}$. The pipe is hydraulically smooth, and the pipe friction
 coefficient $\lambda$ may be calculated using the Blasius formula. The allowed maximum error of the velocity estimation is $\varepsilon_{\max }$.

## DATA

$l_{1}=8 \mathrm{~m}, l_{2}=6 \mathrm{~m}, \mathrm{~h}=3 \mathrm{~m}, k=0 \mathrm{~mm}, \zeta_{v}=3.5, v=1.3 \cdot 10^{-6} \mathrm{~m}^{2} / \mathrm{s}, \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$, $q_{v}=18 \mathrm{~m}^{3} / \mathrm{h}, \mathrm{g}=10 \mathrm{~N} / \mathrm{kg}, \varepsilon_{\max }=5 \%$

## ASSIGNMENT

What should the diameter $d$ be in order to meet the requirement?

