Air, having a density of ρ, flows through an air duct, shown in the image. The axis of the pipe is horizontal. The air duct has a diameter d_{1}, and there is a diffuser before the outlet. The outlet has a diameter d_{2}. On the first section, a small pipe is connected to a pressure tap, and the pipe is led to a vessel filled with water of density ρ_{w}. (This way, the pipe and the vessel function as a manometer.) In the pipe, the water column reaches a height of h.

ASSIGNMENTS

What is the velocity at the outlet?

DATA

$$
\rho=1.2 \mathrm{~kg} / \mathrm{m}^{3}, d_{1}=50 \mathrm{~mm}, d_{2}=100 \mathrm{~mm}, \rho_{w}=1000 \mathrm{~kg} / \mathrm{m}^{3}, h=50 \mathrm{~mm}
$$

HE4-3

open surface

$$
\rho_{3}=p_{0}-\rho_{w} g h \approx \rho_{1}
$$

BE 1-2

$$
N_{1}^{2}=\left(\frac{A_{2}}{A_{1}} N_{2}\right)^{2}
$$

between the pressure

$$
\text { at } 1 \text { and } 3 \text { is negligibly }
$$

Small!

