

Bibliography

Wastewater

Wastewater is any water that has been affected in quality by

anthropogenic influence

Sources of wastewater:

Municipal/communal wastewater – contains everywhere nearly the same contaminants

Storm water

Industrial wastewater: contamination can be much different, it depends on the industry. Industrial wastewater must be cleaned mostly on the site.

Collection of Wastewater

- Combined system of sewers: transports both storm water runoff and sewage in the same pipe
- Separate system of sewers: transports sewage alone and storm water runoff alone (or directly to surface water)

History: Cloaca Maxima one of the world's earliest sewage systems. Constructed in Ancient Rome

Contamination in wastewater

From physical point of view:

- Solids:
 - solid of high density (e.g., stones)
 - swimming solid (e.g., wood)
 - suspended particles (grit, sand, small organic particles, drops of oil etc.)
- Soluble materials
- Emulsions

Gases

Contamination in wastewater

From chemical point of view:

Organic

Inorganic

Organic

BOD = Biochemical Oxygen Demand

The BOD is a measure of the rate at which microorganisms use dissolved oxygen in the bacterial breakdown of organic matter (food) under aerobic conditions.

Organic

BOD₅

The BOD₅ test indicates the organic strength of a wastewater. Biochemical Oxygen Demand gives the amount of oxygen consumed for biodegradation of organic compounds at 20°C over 5 days in 1 liter wastewater in laboratory conditions (dark, without oxygen). It is a measure of the biodegradable organic matter in the

wastewater.
$$\left[\frac{\text{mg O}_2}{l}; \frac{\mu \text{g O}_2}{l}\right]$$

Organic

COD = Chemical Oxygen Demand

The basis for the COD test is that nearly all organic compounds can be fully oxidized to carbon dioxide with a strong oxidizing agent under acidic conditions

COD is a measure of the amount of oxygen consumed from a chemical oxidising agent under controlled conditions. The COD is generally greater than the BOD as the chemical oxidising agent will often oxidise more compounds than is possible under biological conditions.

Water	BOD ₅ [mgO ₂ /l]	COD [mgO ₂ /l]
Clear river	1-3	
Contaminated river	30	
Municipal waste- water	200-350	600
Industrial waste- water		n*1000

Inorganic contaminants

- Nitrogen
- Phosphorus
- Toxic metals (Hg, As, Pl, Ag etc.)
- Cyanide etc.

Wastewater Treatment Plant

Wastewater Treatment Plant

Wastewater treatment can involve

- Physical
- Biological
- Chemical

processes or combination of these processes depending on the required outflow standards.

Main parts of a wastewater treatment plant

Physical (primary) treatment

PROCEDURES

After dewatering water must be returned to waste water line.

Racks and screens

Screen is a device with openings for removing bigger suspended or floating matter in sewage which would otherwise damage equipment or interfere with satisfactory operation of treatment units.

Screen surface types

Coarse screen

Perforated plate screen

Fine screen

Mesh screen

Screening

- Coarse screening, for spacing of over 40 mm
- Medium screening, for spacing of 10 to 40 mm
- Fine screening, for spacing under 10 mm

Parallel bars make easy to empty the refuse.

Bar screen

Inclined bar screen

Inclined bar screen

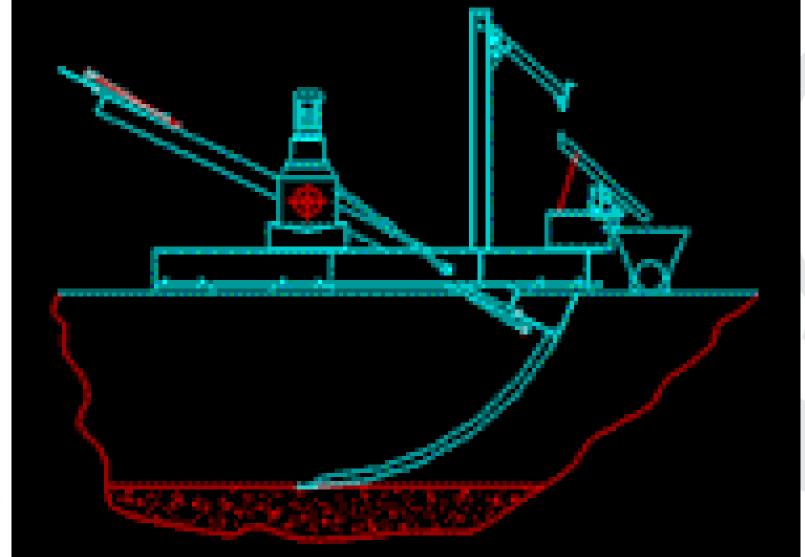
Head loss in screens

$$h_{v} = \beta \left(\frac{S}{b}\right)^{4/3} \sin \alpha \frac{v^{2}}{2g}$$

 $\begin{array}{l} \Delta h \; head \; loss \; [m] \\ S \; thickness \; of \; bars \; [mm] \\ b \; clear \; spacing \; between \; bars \; [mm] \\ v \; velocity \; of \; approach \; [m/s] \\ \alpha \; angle \; of \; bar \; inclination, \; degree \\ \beta \; screen \; loss \; coefficient \end{array}$

Inclined bar screen

Inclined bar screen



Refuse dewatering

Screw press for dewatering

Dewatered refuse

Grit traps/chambers

Grit chambers are basins to remove the inorganic particles to prevent damage to the pumps and to prevent their accumulation in sludge digesters.

Grit Trap

The larger the cross section area, the slower the waste water flow.

Grit Chamber 10.0 x 0.5m

Grit Trap

SEDIMENTATION

Suspension is a heterogeneous mixture of a fluid that contains solid particles sufficiently large for sedimentation

Settling velocity

Behavior of solid particles (balls) in fluid phase:

Settling velocity due to gravity v_{sg} is constant, if the forces are balanced.

Gravity force:

$$F_G = \mathrm{m_S} \mathrm{g} = \frac{\mathrm{d_S^3} \pi}{6} \rho_{\mathrm{S}} \mathrm{g}$$

Buoyancy force:

$$F_B = \frac{\mathrm{d_S^3}\pi}{6} \rho_\mathrm{F} \mathrm{g}$$

Drag force:

$$F_{\text{D}} = C \frac{\rho_{\text{f}}}{2} v_{\text{sg}}^2 \frac{d_{\text{S}}^2 \pi}{4}$$

 $\begin{array}{lll} Diameter of particle: & d_S \\ Solid density: & \rho_S \\ Liquid density: & \rho_F \\ Dynamic viscosity of liquid: & \mu_F \\ Drag coefficient & C \\ \end{array}$

Settling velocity

Drag coefficient vs. Reynolds number

In laminar(Stokes) region:

$$C = \frac{24}{Re}$$

$$Re<1$$

$$Re = \frac{v_{sg}d_{S}\rho_{F}}{\mu_{F}}$$

$$C = \frac{24\mu_{F}}{v_{sg}d_{S}\rho_{F}}$$

$$F_{D} = \frac{24\mu_{F}}{v_{sg}d_{S}\rho_{F}} \frac{\rho_{f}}{2}v_{\ddot{u}g}^{2}\frac{d_{S}^{2}\pi}{4}$$

$$F_{D} = 3\pi d_{S}v_{sg}\mu_{F}$$

Settling velocity

$$F_G = F_D + F_B$$

$$\frac{d_S^3 \pi}{6} \rho_S g = 3\pi d_S v_{sg} \mu_F + \frac{d_S^3 \pi}{6} \rho_F g$$

Settling velocity due to gravity:

$$v_{sg} = \frac{d_S^2(\rho_S - \rho_F)g}{18\mu_F}$$

Criteria of Stokes formula:

- Re<1,
- spherical shape,
- free settling.

a)
$$v_{sg} \sim d_S^2$$

b) $v_{sg} \sim \frac{1}{\mu_F}$

c) $v_{sg} \sim g$

Settling time:

$$t_{\text{s}} = \frac{H}{v_{\text{sg}}}$$

Detention time in the basin:

$$t_d = \frac{L}{v_{water}}$$

$$v_{water} = \frac{\dot{V}}{BH}.$$

$$t_d = \frac{L \cdot B \cdot H}{\dot{V}}$$

$$t_{s} \le t_{d}$$

$$\frac{H}{v_{sg}} \le \frac{L \cdot B \cdot H}{\dot{V}}$$

$$\dot{V}$$

$$L \ge \frac{\dot{V}}{v_{sg}B}$$

RECTANGULAR HORIZONTAL FLOW SETTLEMENT TANK (CLARIFIER)

Outflow weir

Clarified water at outflow weir

Mechanically cleaned waste water

Thank you for your attention!

