BMEGEÁTBG04

Air Pollution, Waste Water and Solid Wastes Management

1st part: Particle removal from gases

Lecturer: Dr. Jenő M. Suda

1st MIDTERM TEST

2021-2022-II. (spring) (8th of May 2022)

45 min (8:15h-9:00h) MGFEA

EVALUATION	max.50 point
group SUM =	%
A	(min. 30% is a must)

IMPORTANT RULI	F	Ш	RU	NT	Α	T	R	O	P	M	ı
----------------	---	---	----	----	---	---	---	---	---	---	---

- Only use pen (except for drawings). Take care of your handwriting. Avoid being misread
--

, \	,
NAME (USE CAPITALs!):	NEPTUN code:
Undersigned, I declare with my own signature t	hat I have read and understood the rules
ordersigned, raceiare with my own signature t	ide i nave read and anderstood the raies.
Signature:	Room Nr. / Seat Nr.:
	MGFEA /

1. QUESTION (5points) /

Let's consider a poly-dispersed particle-gas mixture of liquid mist droplets in the air. The droplet size range is $150\mu m < d_{p,ae} < 300\mu m$.

Give a <u>short & clear explanation</u> of whether this particle-gas mixture \underline{is} or \underline{is} not an "aerosol" by definition!

2. QUESTION (15points) /

Let's consider an aerosol with a particle size range of 5μ m
 d_p <45 μ m. It is known that Q_3 =0,1 for particles having d_p =10 μ m and Q_3 =0,9 for particles having d_p =20 μ m. Moreover, the average diameter based on the particle mass (or volume) is $d_{50,3}$ =15 μ m.

a)Draw the qualitatively proper curve of $Q_3=f(d_p)$ cumulative (undersize) distribution function!

(Graphical answer is needed!)

b)Draw the qualitatively proper curve of $q_3=f(d_p)$ density function!

(Graphical answer is needed!)

Indicate the particle size range in this diagram that contains the upper 30% of the total mass of particles!

(Graphical answer is needed!)

c)The $\eta = f(d_p)$ fractional efficiency curve of a given particle separator equipment is shown here (in red).

Question: Aerosol particles having $d_p>20\mu m$ would be penetrated or separated in this equipment?

(Textual and also graphical answer is needed!)

3. QUESTION (5points) /			
STATEMENT : The aerosols are very dilute r	mixtures.		
Give a short & dense proof of this statement (explanation) with the help of the following: average relative distance, volumetric ratio, mass loading ratio, number density, particle concentration, particle material density etc.			
4. QUESTION (10points) /			
Stokes' drag force and Stokes' drag coeffici	ient. Define both with their formulas. ne + unit of the quantities used in formulas.		
Stokes' drag force:	Stokes' drag coefficient:		

Validity conditions:

List of name + units of the quantities:

Settling velocity of a particle. Define it with	the formula.
Give also its simplified formula when the b	uoyancy force is neglected!
List the quantities in the formulas (name +	unit)
Settling velocity:	Simplified form(without buoyancy):
List of name + units of the used quantities	::
·	

6. QUESTION (10points) /

5. QUESTION (5points) /

What does it mean: "iso-kinetic sampling"?

The iso-kinetic sampling is essential during concentration measurement if large&heavy particles ($\Psi_p \rightarrow \infty$) are in the gas flow. Why?