Bsc Fluid Mechanics Lab Measurements

Measurement M02 Assignments

A	Determine the velocity distribution of a cylindrical jet in the following cross-sections: $z_1=0\cdot D_0$, $z_2=2\cdot D_0$, $z_3=4\cdot D_0$, $z_4=5\cdot D_0$, $z_5=6\cdot D_0$, $z_6=7\cdot D_0$, $z_7=8\cdot D_0$, $z_8=9\cdot D_0$, $z_9=10\cdot D_0$.
	Take measurement points in the radial direction using the following increments ($\Delta r=2$, 5, and 10mm
	depending on the diameter of the jet at the given cross-section)
	Set the outlet velocity of the jet to be 75% of the maximum velocity.
	Check your results using the online validation program <u>www.ara.bme.hu/lab</u> !
В	Determine the velocity distribution of a cylindrical jet in the following cross-sections:
	$z_1=0\cdot D_0$, $z_2=2\cdot D_0$, $z_3=4\cdot D_0$, $z_4=5\cdot D_0$, $z_5=6\cdot D_0$, $z_6=7\cdot D_0$, $z_7=8\cdot D_0$, $z_8=9\cdot D_0$, $z_9=10\cdot D_0$.
	Take measurement points in the radial direction using the following increments (Δr =2, 5, and 10mm
	depending on the diameter of the jet at the given cross-section)
	Set the outlet velocity of the jet to be 100% of the maximum velocity.
	Check your results using the online validation program www.ara.bme.hu/lab!
C	Determine the velocity distribution of a cylindrical jet in the following cross-sections: $z_1=0\cdot D_0$, $z_2=2\cdot D_0$, $z_3=4\cdot D_0$, $z_4=5\cdot D_0$, $z_5=6\cdot D_0$, $z_6=7\cdot D_0$, $z_7=8\cdot D_0$, $z_8=9\cdot D_0$, $z_9=10\cdot D_0$.
	Take measurement points in the radial direction using the following increments ($\Delta r=2$, 5, and 10mm
	depending on the diameter of the jet at the given cross-section)
	Set the outlet velocity of the jet to be 50% of the maximum velocity.
	Check your results using the online validation program <u>www.ara.bme.hu/lab</u> !
D	Determine the velocity distribution of a cylindrical jet in the following cross-sections: $z_1=0\cdot D_0$, $z_2=2\cdot D_0$, $z_3=4\cdot D_0$, $z_4=5\cdot D_0$, $z_5=6\cdot D_0$, $z_6=7\cdot D_0$, $z_7=8\cdot D_0$, $z_8=9\cdot D_0$, $z_9=10\cdot D_0$.
	Take measurement points in the radial direction using the following increments ($\Delta r=2$, 5, and 10mm
	depending on the diameter of the jet at the given cross-section)
	Set the outlet velocity of the jet to be 80% of the maximum velocity.
	Check your results using the online validation program <u>www.ara.bme.hu/lab</u> !
E	Determine the velocity distribution of a cylindrical jet in the following cross-sections:
	z1=0·D0, z2=2·D0, z3=4·D0, z4=5·D0, z5=6·D0, z6=7·D0, z7=8·D0, z8=9·D0, z9=10·D0.
	Take measurement points in the radial direction using the following increments (Δr =2, 5, and 10mm
	depending on the diameter of the jet at the given cross-section)
	Set the outlet velocity of the jet to be 60% of the maximum velocity.
	Check your results using the online validation program www.ara.bme.hu/lab !