
















Inlet boundary conditions			
Both k and ϵ (w) need to be specified.			
Turbulent intensity: $I = \frac{u}{u}$			
Very silent flow:	I < 1%		
Very turbulent flow:	I > 10 %		
In the core of a channel flow:	$I \cong \frac{0.16}{\sqrt[8]{Re}}$		
Estimation of the length scale L:	•		
After a perforated plate: hole diameter Downstream from a small obstacle: height of the obstacle In the core of a channel flow: 0.07 D			
Estimation of some turbulent quantities:	$\mu_t \cong 1.22 \rho \overline{u} IL$		
	$k \cong 1.5 \overline{u}^2 I^2$		
	$\epsilon \cong C_{\mu}^{0.75} k^{1.5} L^{-1}$		
	$\omega \!\cong\! C_{\mu}^{-0.25} k^{0.5} L^{-1}$		

Classificati	on of	some well known turbulence models
Algebraic mode	not kr	al shear rate + length scale (eg. from wall distance). Does now about the flow history, wall distance cannot be defined mplex cases.
Reynolds average	ged (RA	NS) models based on transport equations:
Spalart-Allmaras	1 eq.	 Airfoils, nearly 2D flow, Spreading rate of jets are predicted with 100% error.
k-ε	2 eq.	- For general use 3D, isotropic.
k-ω	2 eq.	 Viscous sub-layer, transition.
RSM	7 eq.	 Anisotropy, eg. for secondary flow and for cyclones. Up to 10 or 20 times more iterations can be necessary.
Stabilization of th	e flow (steady flow) is not guaranteed by any RANS models.
Scale resolving	models	с.
DNS	- Fully	resolved turbulence. Computational cost grows with Huge amount of junk data is produced.
LES,	 Only the large eddies are taken into account. Effect of sub-grid scale turbulence: SGS models. Close to the wall a fine mesh is required. 	
DES, SAS		S model is used close to the wall (e.g.Spalart-Allmaras I), approaches to LES more deeply in the main flow.

Scale resolving models

[LES results from dr. Máté Lohász]

- Unsteady simulations resulting in fluctuating velocity field.
- Less (if any) turbulent viscosity is used, depending on model resolution. •
- Relies much less on the accuracy of turbulent models. •
- Usually give much better results.
- Synthetic turbulence must to be defined at the inlet.
- •
- Application of special numerical schemes, which do not suppress fluctuations, is necessary. Steady field quantities can only be obtained after a long term averaging.

LES Some 80% of the total turbulent kinetic energy need to be The minimum grid size for resolving the free stream turbulence is 32³. When approaching the wall the eddies are getting smaller, therefore the grid must be refined in every directions. Hexahedral mesh is recommended. A special (non dissipative) numerical scheme is necessary: Bounded Central Differencing Scheme Only 3D, unsteady models are appropriate. SGS models, e.g. Smagorinskij-Lilly: (in which L is limited by the cell size and close to the wall it is 0.4y)

Periodic inlet-outlet or unsteady inlet and non reflective outlet boundary condition is necessary. (There are solutions for unsteady LES inlet BC in FLUENT)