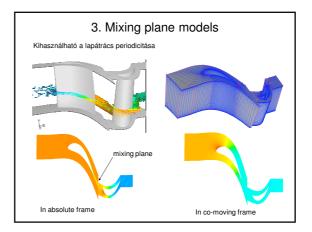
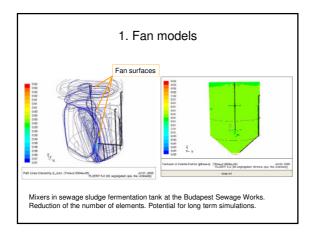
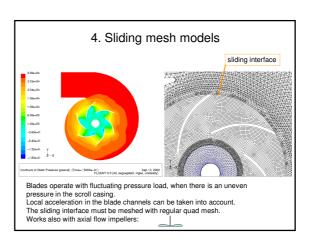


Inlet and outlet BC packages		
Velocity-inlet	i	Inflow or outflow (if negative) of given velocity. BC of second kind for the pressure. First kind BC for every other field variable.
Mass-flow-inlet	i+e	Inflow at given mass-flow-rate or mass flux (pv) profile. It is a BC of second kind for the pressure.
Pressure-inlet	i+e	Inflow with a given pressure profile. Flow direction must be specified. BC of 2nd kind for the velocity magnitude. BC of 1st kind for every othe scalar quantity.
Pressure-outlet	i+e	Outflow with a given static pressure profile. BC of 2nd kind for the velocity and other field variables. Target mass-flow-rate can be spec.
Outflow	ć	Outflow with a given share of flow rate. BC of 2nd kind for every quantity. Non-reflective. Only outflow is allowed!
Pressure-far- field	e	In- or outflow with given far-field characteristics. Flow direction and Mach number can be specified. Non-reflective.
Inlet-vent	i+e	Pressure-inlet + $\zeta(\textbf{v})$ loss coeff. E.g. an intake with a filter of grid.
Intake-fan	i+e	Pressure-inlet + $\Delta p(v)$ pressure rise. (Characteristic curve.)
Outlet-vent	i+e	Pressure-outlet + $\zeta(v)$ loss coeff. Outlet with a filter or grid.
Exhaust-fan	i+e	Pressure-outlet + $\Delta p(\mathbf{v})$ pressure rise.




Other BCs		
Symmetry	Face normal velocity is 0. BC of 2 nd kind for every other field variable.	
Wall	BC of 1 st kind for the velocity and 2 nd kind for the pressure. Many options for thermal BCs. E.g. water surface can be modeled as a frictionless wall.	
Axis	Axis of an axisymmetric 2D model. Always along the x axis. v=0, w=0, BC of 2^{nd} kind for every other field variable.	
Periodic	Flow quantities are matched in every point of the periodic surface pair. Requires identical mesh on both surface. Translational (eg. tube bundle or rotational (eg. turbine blade) Pressure gradient or target mass-flow- rate can be specified.	
Interface	Connects separate grids. It does not require matching nodes. Grids can slide on each other in every time step. There is an option for periodic BC.	



Modeling fluid machinery Actuation disk - fan

- 2. Rotating frame frozen rotor
- 3. Bidirectional averaging mixing plane
- 4. Rotating zone sliding mesh

